Hens That Exhibit Poorer Feed Efficiency Produce Eggs with Lower Albumen Quality and Are Prone to Being Overweight
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Experimental Diet
2.3. Onset of Lay, Egg Weight at First Lay
2.4. Preliminary Study, 25–30 Weeks of Age
2.5. Hen Performance, 35–40 Weeks of Age
2.6. External Egg Abnormality Score
2.7. Egg Quality Analysis
2.7.1. External Quality
2.7.2. Internal Quality
2.8. Quantitative Amino Acid Concentration Analysis
2.9. Nutrient Digestibility
2.10. Statistical Analysis
3. Results
3.1. Hen Performance
3.2. Onset of Lay and Egg Weight at First Lay
3.3. Egg Abnormality Score
3.4. Egg Quality
3.5. Amino Acid Composition
3.6. Nutrient Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hess, C.W.; Byerly, T.C.; Jull, M.A. The Efficiency of Feed Utilization by Barred Plymouth Rock and Crossbred Broilers. Poult. Sci. 1941, 20, 210–216. [Google Scholar] [CrossRef]
- Miller, M.M.; Quisenberry, J.H. Factors Affecting Feed Efficiency for Egg Production in Selected Strains of Caged Layers*. Poult. Sci. 1958, 38, 757–766. [Google Scholar] [CrossRef]
- Reyer, H.; Hawken, R.; Murani, E.; Ponsuksili, S.; Wimmers, K. The genetics of feed conversion efficiency traits in a commercial broiler line. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aviagen Optimizing Broiler Feed Conversion Ratio. Available online: https://eu.aviagen.com/assets/Uploads/RossTechNote-FCRJuly2011.pdf (accessed on 30 August 2021).
- Agostini, P.; Fahey, A.; Manzanilla, E.; O’Doherty, J.; De Blas, C.; Gasa, J. Management factors affecting mortality, feed intake and feed conversion ratio of grow-finishing pigs. Animal 2014, 8, 1312–1318. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, N.; Ibarburu, M.; Xin, H. Comparison of the environmental footprint of the egg industry in the United States in 1960 and 2010. Poult. Sci. 2014, 93, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, L.R.; Sarmento, J.L.R.; Neto, S.G.; de Paula, N.R.O.; Oliveira, R.L.; do Rêgo, W.M.F. Residual feed intake: A nutritional tool for genetic improvement. Trop. Anim. Health Prod. 2013, 45, 1649–1661. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Basarab, J.A.; Beauchemin, K.A.; Baron, V.S.; Ominski, K.H.; Guan, L.L.; Miller, S.P.; Crowley, J.J. Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production. Animal 2013, 7, 303–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, H.; Liu, K. Precision livestock farming in egg production. Anim. Front. 2017, 7, 24–31. [Google Scholar] [CrossRef]
- Lacin, E.; Yildiz, A.; Esenbuga, N.; Macit, M. Effects of differences in the initial body weight of groups on laying performance and egg quality parameters of Lohmann laying hens. Czech J. Anim. Sci. 2008, 53, 466–471. [Google Scholar] [CrossRef] [Green Version]
- Akter, Y.; Greenhalgh, S.; Islam, M.R.; Hutchison, C.; O ’Shea, C.J. Hens ranked as highly feed efficient have an improved albumen quality profile and increased polyunsaturated fatty acids in the yolk. J. Anim. Sci. 2018, 96, 3482–3490. [Google Scholar] [CrossRef]
- Anene, D.O.; Akter, Y.; Thomson, P.C.; Groves, P.; Shea, C.J.O. Variation and Association of Hen Performance and Egg Quality Traits in Individual Early-Laying ISA Brown Hens. Animals 2020, 10, 1601. [Google Scholar] [CrossRef]
- Parkinson, G.B.; Roberts, J.R.; Horn, R. Pullet and Layer Flock Uniformity, Persistency and Longevity: An Epidemilogical, Industry—Based Approach to Improve Feed Efficiency: A Report for the Australian Egg Corporation Limited; AECL Publication: Sydney, Ausralia, 2015. [Google Scholar]
- Wing, T.L. Importance of Individual Feed Records in Breeding for Feed Efficiency in Layer-Type Chickens; Iowa State University: Ames, IA, USA, 1981. [Google Scholar]
- National Health and Medical Research Council. Australian Code for the Care and Use of Animals for Scientific Purposes, 8th ed.; National Health and Medical Research Council: Canberra, Australia, 2013; ISBN 1864965975. [Google Scholar]
- ISA Brown ISA Brown Management Guide. Available online: http://www.supremefeeds.com/wp-content/uploads/2015/08/ISA-Brown-Management-Guide.pdf (accessed on 20 July 2021).
- Şekeroǧlu, A.; Altuntaş, E. Effects of egg weight on egg quality characteristics. J. Sci. Food Agric. 2009, 89, 379–383. [Google Scholar] [CrossRef]
- Cohen, S.A.; Michaud, D.P. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high performance liquid chromatography. Anal. Biochem. 1993, 211, 279–287. [Google Scholar] [CrossRef]
- Cohen, S. Amino acid analysis using precolumn derivatisation with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. In Methods in Molecular Biology; Cooper, C., Packer, N., Williams, K., Eds.; Humana Press: Totowa, NJ, USA, 2001; Volume 159, pp. 39–47. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; George, W.L.J., Ed.; AOAC International: Rockville, MD, USA, 2016; ISBN 0935584870. [Google Scholar]
- Bourdillon, A.; Carré, B.; Conan, L.; Duperray, J.; Huyghebaert, G.; Leclercq, B.; Lessire, M.; McNab, J.; Wiseman, J. European reference method for the in vivo determination of metabolisable energy with adult cockerels: Reproducibility, effect of food intake and comparison with individual laboratory methods. Br. Poult. Sci. 1990, 31, 557–565. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Arthur, P.; Archer, J.A.; Richardson, E.C.; Herd, R.M. Potential for selection to improve efficiency of feed use in beef cattle: A review. Aust. J. Agric. Res. 1999, 20. [Google Scholar] [CrossRef]
- Tserveni-Gousi, A.S. The Egg Weight Curve in Pullets Selected for Early Sexual Maturity. Poult. Sci. 1993, 72, 1018–1024. [Google Scholar] [CrossRef]
- Duman, M.; Şekeroğlu, A.; Yıldırım, A.; Eleroğlu, H. Camcı Relation between egg shape index and egg quality characteristics. Eur. Poult. Sci. 2016, 80, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Shan, Y. Assessment of the relationship between ovomucin and albumen quality of shell eggs during storage. Poult. Sci. 2019, 98, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Nys, Y.; Guyot, N. Egg formation and chemistry. In Improving the Safety and Quality of Eggs and Egg Products: Egg Chemistry, Production and Consumption; Nys, Y., Bain, M., Van Immerseel, F., Eds.; Woodhead Publishing: Cambridge, UK, 2011; pp. 83–132. ISBN 9781845697549. [Google Scholar]
- Van Tijen, W.F. The correlation between height of thick albumen, yolk diameter, shape index and the position of the yolk after storage. Br. Poult. Sci. 1972, 13, 1–6. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The golden egg: Nutritional value, bioactivities, and emerging benefits for human health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurnik, J.F.; Summers, J.D.; Reinhart, B.S.; Swierczewska, E.M. Effect of Age on the Performance of Laying Hens During the First Year of Production. Poult. Sci. 1977, 56, 222–230. [Google Scholar] [CrossRef]
- Fayeye, T.R.; Adeshiyan, A.B.; Olugbami, A.A. Egg traits, hatchability and early growth performance of the Fulani-ecotype chicken. Livest. Res. Rural Dev. 2005, 17, 1–7. [Google Scholar]
- Tessari, P.; Lante, A.; Mosca, G. Essential amino acids: Master regulators of nutrition and environmental footprint. Sci. Rep. 2016, 6, 26074. [Google Scholar] [CrossRef] [Green Version]
- Nimalaratne, C.; Wu, J. Hen Egg as an Antioxidant Food Commodity : A Review. Nutrients 2015, 7, 8274–8293. [Google Scholar] [CrossRef] [Green Version]
- Benedé, S.; Molina, E. Chicken egg proteins and derived peptides with antioxidant properties. Foods 2020, 9, 735. [Google Scholar] [CrossRef]
- Nimalaratne, C.; Lopes-Lutz, D.; Schieber, A.; Wu, J. Free aromatic amino acids in egg yolk show antioxidant properties. Food Chem. 2011, 129, 155–161. [Google Scholar] [CrossRef]
- Pym, R.A.E.; Nicholls, P.J.; Thomson, E.; Choice, A.; Farrell, D.J. Energy and nitrogen metabolism of broilers selected over ten generations for increased growth rate, food consumption and conversion of food to gain. Br. Poult. Sci. 1984, 25, 529–539. [Google Scholar] [CrossRef]
- Grobas, S.; Mendez, J.; De Blas, C.; Mateos, G.G. Laying hen productivity as affected by energy, supplemental fat, and linoleic acid concentration of the diet. Poult. Sci. 1999, 78, 1542–1551. [Google Scholar] [CrossRef]
- Panda, A.K.; Rao, S.V.R.; Raju, M.V.L.N.; Niranjan, M. Maddula Ramkoti Reddy Effect of nutrient density on production performance, egg quality and humoral immune response of brown laying (Dahlem Red) hens in the tropics. Trop. Anim. Health Prod. 2012, 44, 293–299. [Google Scholar] [CrossRef]
Hen Age | FE | FCR | EP | EW | EM | ADFI | IBW | FBW | BWC |
---|---|---|---|---|---|---|---|---|---|
Preliminary ranking period (25–30 weeks) | HFE | 1.83 | 98.8 | 63.5 | 62.0 | 113 | 1760 | 1923 | 164 |
MFE | 2.05 | 98.8 | 61.9 | 60.3 | 124 | 1801 | 2016 | 215 | |
LFE | 2.39 | 97.9 | 60.8 | 58.3 | 138 | 1877 | 2159 | 282 | |
Experimental period (35–40 weeks) | HFE | 1.77 a | 98.0 | 64.8 | 63.6 a | 113 a | 1923 a | 1966 a | 43.1 a |
MFE | 1.89 b | 98.0 | 63.5 | 62.2 b | 118 b | 2016 b | 2055 b | 38.3 a | |
LFE | 2.13 c | 96.4 | 62.9 | 60.6 b | 128 c | 2154 c | 2253 c | 98.5 b | |
SEM | 0.10 | 0.60 | 0.58 | 0.69 | 0.35 | 24 | 29 | 13 | |
p-value | <0.0001 | 0.089 | 0.06 | 0.01 | <0.0001 | <0.0001 | <0.0001 | 0.001 |
Hen Feed Efficiency Group (n = 15 per FE Group) | |||||
---|---|---|---|---|---|
Egg Quality Traits | HFE | MFE | LFE | SEM | p-Value |
Egg weight (g) | 64.5 | 62.6 | 61.7 | 0.811 | 0.055 |
Egg width (mm) | 44.7 a | 43.9 b | 43.9 b | 0.19 | 0.011 |
Egg height (mm) | 57.2 | 57.3 | 56.5 | 0.36 | 0.284 |
Shape index (%) | 78.1 | 76.8 | 77.7 | 0.44 | 0.112 |
Albumen height (mm) | 11.1 a | 10.2 b | 8.8 c | 0.23 | <0.0001 |
Albumen width (mm) | 66.1 b | 65.5 b | 68.1 a | 0.85 | <0.0001 |
Albumen index (%) | 16.6 a | 15.7 a | 13.0 b | 0.50 | <0.0001 |
Albumen weight (g) | 38.8 a | 38.1 b | 37.4 c | 0.20 | <0.0001 |
Albumen weight (%) | 61.8 a | 60.5 b | 59.3 c | 0.31 | <0.0001 |
Haugh unit | 103 a | 99 b | 93 c | 0.98 | <0.0001 |
Albumen pH | 8.0 | 7.9 | 8.1 | 0.03 | 0.193 |
Yolk height (mm) | 17.7 | 17.5 | 17.4 | 0.10 | 0.179 |
Yolk width (mm) | 37.6 b | 38.1 b | 39.0 a | 0.17 | <0.0001 |
Yolk index (%) | 46.7 a | 46.1 a | 45.1 b | 0.32 | 0.004 |
Yolk weight (g) | 15.0 b | 15.4 b | 16.3 a | 0.17 | <0.0001 |
Yolk weight (%) | 23.9 b | 24.5 b | 25.9 a | 0.27 | <0.0001 |
Yolk pH | 5.9 | 5.9 | 6.0 | 0.03 | 0.531 |
Yolk:albumen ratio | 0.38 c | 0.40 b | 0.43 a | 0.006 | <0.0001 |
Yolk colour (DSM) | 11.5 | 11.3 | 11.4 | 0.094 | 0.416 |
Shell weight (g) | 6.42 | 6.41 | 6.26 | 0.07 | 0.251 |
Shell thickness (mm) | 0.41 | 0.41 | 0.41 | 0.002 | 0.493 |
Shell weight (%) | 10.0 | 10.3 | 10.2 | 0.13 | 0.292 |
Shell breaking strength (g) | 4607 | 4818 | 4995 | 146.91 | 0.186 |
FE Group (n = 10 per FE group) | ||||
---|---|---|---|---|
Amino Acid, mg/g Freeze-Dried Albumen | HFE | LFE | SEM | p-Value |
Histidine | 21.6 | 20.3 | 0.16 | <0.0001 |
Serine | 60.9 | 57.9 | 0.47 | 0.0003 |
Arginine | 51.2 | 48.4 | 0.42 | 0.0002 |
Glycine | 31.6 | 29.7 | 0.27 | <0.0001 |
Aspartic acid | 119.4 | 114.1 | 0.90 | 0.0014 |
Glutamic acid | 91.3 | 86.7 | 0.85 | 0.0006 |
Threonine | 40.6 | 38.1 | 0.38 | 0.0002 |
Alanine | 51.7 | 49.1 | 0.41 | 0.0003 |
Proline | 32.3 | 30.6 | 0.24 | 0.0001 |
Lysine | 61.4 | 57.6 | 0.70 | 0.0012 |
Tryosine | 33.9 | 31.9 | 0.34 | 0.0006 |
Methionine | 35.9 | 34.3 | 0.25 | 0.0003 |
Valine | 62.3 | 59.2 | 0.48 | 0.0003 |
Isoleucine | 48.8 | 46.6 | 0.35 | 0.0003 |
Leucine | 77.5 | 73.8 | 0.54 | 0.0001 |
Phenylalanine | 55.2 | 52.4 | 0.39 | <0.0001 |
Measurements | HFE | MFE | LFE | SEM | p-Value |
---|---|---|---|---|---|
Dry matter intake (g/day) | 102.1 a | 105.5 a | 117.2 b | 2.08 | <0.0001 |
Dry matter output (g/day) | 23.5 a | 24.8 a | 28.6 b | 0.79 | <0.0001 |
Dry matter retention (%) | 76.8 | 76.5 | 75.5 | 0.60 | 0.3287 |
Nitrogen retention (%) | 57.8 | 57.9 | 56.3 | 1.25 | 0.6020 |
Gross energy retention (%) | 79.5 | 79.0 | 79.0 | 0.49 | 0.4902 |
Apparent metabolisable energy (MJ/kg) of DM | 12.1 | 12.0 | 12.05 | 0.07 | 0.4798 |
Apparent metabolisable energy (MJ/kg) corrected for N | 11.9 | 12.0 | 11.8 | 0.06 | 0.3597 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anene, D.O.; Akter, Y.; Thomson, P.C.; Groves, P.; Liu, S.; O’Shea, C.J. Hens That Exhibit Poorer Feed Efficiency Produce Eggs with Lower Albumen Quality and Are Prone to Being Overweight. Animals 2021, 11, 2986. https://doi.org/10.3390/ani11102986
Anene DO, Akter Y, Thomson PC, Groves P, Liu S, O’Shea CJ. Hens That Exhibit Poorer Feed Efficiency Produce Eggs with Lower Albumen Quality and Are Prone to Being Overweight. Animals. 2021; 11(10):2986. https://doi.org/10.3390/ani11102986
Chicago/Turabian StyleAnene, Doreen Onyinye, Yeasmin Akter, Peter Campbell Thomson, Peter Groves, Sonia Liu, and Cormac John O’Shea. 2021. "Hens That Exhibit Poorer Feed Efficiency Produce Eggs with Lower Albumen Quality and Are Prone to Being Overweight" Animals 11, no. 10: 2986. https://doi.org/10.3390/ani11102986
APA StyleAnene, D. O., Akter, Y., Thomson, P. C., Groves, P., Liu, S., & O’Shea, C. J. (2021). Hens That Exhibit Poorer Feed Efficiency Produce Eggs with Lower Albumen Quality and Are Prone to Being Overweight. Animals, 11(10), 2986. https://doi.org/10.3390/ani11102986