Energy-Efficient Industrial Internet of Things in Green 6G Networks
Abstract
:1. Introduction
1.1. The Background of the Study
1.2. The Research Gap of the Study
1.3. The Objectives of the Study
2. Methodology
No. | Source | Applied Research |
---|---|---|
1 | [39] | Sixth-generation IoT Radio-over-Fiber (RoF) system flexibility and efficiency across high-density heterogeneous devices by use of artificial intelligence (AI)-based smart algorithms |
2 | [41] | Air–space–ground–sea AI 6G integrated network green architecture, radio and traffic map network perception green solutions for efficient AI-based green fusion, and KubeEdge wireless green management platform for node containerization and wireless connection expansion to carry out joint scheduling and resource orchestration |
3 | [32] | Cost-efficient computation offloading (CeCO)—an industrial network computation offloading framework with network regulation master fog controller and fog device IIoT data distribution, and IIoT device weighted energy-delay cost sum optimization function design |
4 | [33] | Intelligent-algorithm-based ambient backscatter system for resource scheduling scheme and task offloading optimization to reduce energy consumption and latency, while constituting a federated learning and asynchronous advantage actor–critic algorithm-based Markov decision process |
5 | [34] | Sixth-generation energy-efficient in-network computing for network function integration in a general computing platform that serves as a network node and configures a unified hypervisor and container-based application task operating environment, significantly reducing data center energy consumption |
6 | [43] | Long short-term memory deep recurrent neural networks in next-generation 6G edge network design for green computation in terms of energy consumption joint optimization Markov decision process |
7 | [35] | A distributed federated learning (DBFL) framework for distant device connection in mobile edge computing architectures in a clustering-protocol-based distributed manner, overcoming energy efficiency issues |
8 | [54] | Green energy wireless charging algorithms can efficiently power IoT devices by multi-green base station joint accumulative charging schemes |
9 | [63] | A 5G-technology-based heterogeneous wireless network resource virtualization architecture for green computing with regard to IoT data classification |
10 | [45] | An extended Kalman filtering method for 6G IoT sensing devices can predict harvesting power |
11 | [37] | Blockchain, green ubiquitous IoT wireless spectrum sharing, and 6G mobile communication technology for energy efficiency |
12 | [14] | Energy-aware resource management, 6G-enabled cell-free massive MIMO networks, and green communication capabilities can provide optimized network coverage and power based on MIPA-MCAS algorithms |
13 | [59] | A 6G IoT confidence information coverage reinforcement learning node sleep scheduling algorithm and Q-learning collaborative intelligence can extend network lifetime, balance the energy consumption, and enhance resource efficiency with fewer active nodes |
14 | [60] | A hybrid whale spotted hyena optimization (HWSHO) algorithm for 6G-enabled massive IoT device green communication in terms of energy-efficient network cluster-based data dissemination |
15 | [75] | Deep reinforcement learning MIMO-NOMA IoT systems and Age of Information can shape optimal channel capacity, power allocation, spectrum efficiency, and energy consumption |
16 | [65] | Digital twin AI algorithms enable energy-efficient 6G network deployment in smart factories based on mobile-enhanced big data edge computing–cloud collaborative mechanisms for green communication and network performance optimization |
17 | [52] | Fifth-generation Industrial Internet of Things (IIoT) heterogeneous network intelligence-driven green energy-efficient resource allocation mechanisms based on deep reinforcement learning algorithms |
18 | [61] | Integrated relative energy efficiency can assess traffic profiles and wireless network capacities for green communications |
19 | [66] | Sixth-generation edge–cloud collaborative industrial-IoT-learning-based data compressions and transmissions for spectrum efficiency increase and system latency mitigation |
3. Source Correlation Analysis
Main topics covered by the authors in each group | pear (collaborative industrial artificial-intelligence-based smart IoT devices), maroon (green-network-based energy efficient systems), orange (6G-network-based energy efficient and green artificial intelligence IoT industrial wireless systems), violet (energy-aware resource management and spectrum sensing algorithms), turquoise (green 6G artificial intelligence IoT industrial wireless systems), azure (large-scale industrial production-based IoT device technologies) |
Research focus reasons | pear (6G AI green computing and autonomous wireless communications), maroon (deep- and machine-learning-based green communications), orange (edge–cloud collaborative 6G IIoT networks), violet (artificial intelligence energy-efficient communication autonomous networks), turquoise (massive wireless energy-efficient sustainable network automation), azure (edge computing IIoT process intelligence) |
The number of research groups having shared interests | pear (25), maroon (24), orange (23), violet (28), turquoise (26), azure (10) |
Main topics covered by the authors in each group | violet (AI intelligent energy harvesting and optimization algorithms), pear (6G IIoT green communication and resource allocation), turquoise (IIoT in green 6G networks), amaranth (context-aware autonomous power efficiency), azure (blockchain-technology-based energy efficient resource management), baby blue (energy-aware resource management algorithms) |
Research focus reasons | violet (sustainable green 6G IIoT networks), pear (6G edge computing green communication wireless network planning), turquoise (IoT distributed artificial intelligence 6G pervasive edge computing communication networks), amaranth (energy-efficient IoT smart industrial urban computing environments), azure (intelligence-driven self-organizing energy-efficient green resource allocation), baby blue (artificial intelligence energy-efficient communication autonomous networks) |
The number of research groups having shared interests | violet (7), pear (13), turquoise (7), amaranth (8), azure (6), baby blue (6) |
Main topics covered by the authors in each group | pear (federated learning, 6G wireless communication, and multi-agent systems), jade (massive wireless energy-efficient sustainable network automation), turquoise (edge intelligence and mobile communication network management automation systems), violet (environment mapping and spectrum sensing algorithms), blue-green (6G-sensor-based energy-efficient IoT smart industrial urban environments), amaranth (6G green communications and IIoT fog networks) |
Research focus reasons | pear (6G IoT energy-efficient fog computing networks), jade (6G edge computing, wireless spectrum, and digital twin technologies), turquoise (green IoT, immersive simulation, and cloud-based computing technologies), violet (energy-efficient 6G IoT fog computing and environmentally aware wireless communication technologies), blue-green (artificial intelligence energy-efficient communication autonomous and clustered wireless sensor networks), amaranth (energy-efficient IoT smart industrial urban computing environments) |
The number of research groups having shared interests | pear (29), jade (36), turquoise (10), violet (8), blue-green (7), amaranth (37) |
Main topics covered by the authors in each group | pear (IIoT network edge computing nodes and edge–cloud collaborative flexible computing resource allocation and sharing), violet (big-data-based intelligent decision and energy-efficient in-network computing task scheduling algorithms), blue-green (6G energy-efficient and energy-aware resource management), emerald (6G IIoT edge and cloud collaborative mechanisms for energy-aware decision support systems), amaranth (mobile-enhanced digital twin technologies for pervasive edge computing IIoT process intelligence) |
Research focus reasons | pear (6G blockchain-based green IoT big data networks), violet (IIoT deployment in green 6G networks and environments), blue-green (energy-efficient IoT smart industrial urban computing environments), emerald (6G pervasive edge computing communication networks), amaranth (industrial cloud computing capabilities for energy efficient IoT network connectivity) |
The number of research groups having shared interests | pear (38), violet (10), blue-green (32), emerald (34), amaranth (64) |
4. Distributed Artificial Intelligence Green 6G Pervasive Edge Computing Communication Networks in Energy-Efficient IoT Smart Industrial Urban Environments
5. Energy-Efficient Algorithm and Green Computing Technologies in Smart Industrial Equipment and Manufacturing Environments
6. Sustainable Energy Efficiency and Green Power Generation in Distributed Artificial Intelligence 6G Pervasive Edge Computing Communication Networks
7. Results
8. Discussion
9. Case Study: Fujitsu Data Application Simulations on Energy-Efficient Industrial Internet of Things in Autonomous Green 6G Networks
10. Conclusions
11. Theoretical Contributions to the Literature
12. Practical Contributions to the Literature
13. Limitations and Further Directions of Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salah Uddin, G.; Abdullah-Al-Baki, C.; Donghyun, P.; Ahmed, A.; Shu, T. Social benefits of solar energy: Evidence from Bangladesh. Oeconomia Copernic. 2023, 14, 861–897. [Google Scholar] [CrossRef]
- Yin, H.-T.; Wen, J.; Chang, C.-P. Going green with artificial intelligence: The path of technological change towards the renewable energy transition. Oeconomia Copernic. 2023, 14, 1059–1095. [Google Scholar] [CrossRef]
- Zheng, M.; Feng, G.-F.; Chang, C.-P. Is green finance capable of promoting renewable energy technology? Empirical investigation for 64 economies worldwide. Oeconomia Copernic. 2023, 14, 483–510. [Google Scholar] [CrossRef]
- Jakubelskas, U.; Skvarciany, V. Circular economy practices as a tool for sustainable development in the context of renewable energy: What are the opportunities for the EU? Oeconomia Copernic. 2023, 14, 833–859. [Google Scholar] [CrossRef]
- Sánchez García, J.; Galdeano Gómez, E. What drives the preferences for cleaner energy? Parametrizing the elasticities of environmental quality demand for greenhouse gases. Oeconomia Copernic. 2023, 14, 449–482. [Google Scholar] [CrossRef]
- Ferrigno, G.; Del Sarto, N.; Piccaluga, A.; Baroncelli, A. Industry 4.0 base technologies and business models: A bibliometric analysis. Eur. J. Innov. Manag. 2023, 26, 502–526. [Google Scholar] [CrossRef]
- Hassan, N.; Fernando, X.; Woungang, I.; Anpalagan, A. User Association Performance Trade-Offs in Integrated RF/mmWave/THz Communications. Future Internet 2023, 15, 376. [Google Scholar] [CrossRef]
- Singh, S.; Rosak-Szyrocka, J.; Drotár, I.; Fernando, X. Oceania’s 5G Multi-Tier Fixed Wireless Access Link’s Long-Term Resilience and Feasibility Analysis. Future Internet 2023, 15, 334. [Google Scholar] [CrossRef]
- Fernando, X.; Lăzăroiu, G. Spectrum Sensing, Clustering Algorithms, and Energy-Harvesting Technology for Cognitive-Radio-Based Internet-of-Things Networks. Sensors 2023, 23, 7792. [Google Scholar] [CrossRef]
- Gupta, A.; Fernando, X. Simultaneous Localization and Mapping (SLAM) and Data Fusion in Unmanned Aerial Vehicles: Recent Advances and Challenges. Drones 2022, 6, 85. [Google Scholar] [CrossRef]
- Kumar, A.S.; Zhao, L.; Fernando, X. Task Offloading and Resource Allocation in Vehicular Networks: A Lyapunov-Based Deep Reinforcement Learning Approach. IEEE Trans. Veh. Technol. 2023, 72, 13360–13373. [Google Scholar] [CrossRef]
- Malik, U.M.; Javed, M.A.; Zeadally, S.; ul Islam, S. Energy-Efficient Fog Computing for 6G-Enabled Massive IoT: Recent Trends and Future Opportunities. IEEE Internet Things J. 2022, 9, 14572–14594. [Google Scholar] [CrossRef]
- Ghiasi, M.; Wang, Z.; Mehrandezh, M.; Jalilian, S.; Ghadimi, N. Evolution of smart grids towards the Internet of energy: Concept and essential components for deep decarbonisation. IET Smart Grid 2023, 6, 86–102. [Google Scholar] [CrossRef]
- Taneja, A.; Rani, S.; Garg, S.; Hassan, M.M.; AlQahtani, S.A. Energy aware resource control mechanism for improved performance in future green 6G networks. Comput. Netw. 2022, 217, 109333. [Google Scholar] [CrossRef]
- Mahmood, M.R.; Matin, M.A.; Sarigiannidis, P.; Goudos, S.K. A Comprehensive Review on Artificial Intelligence/Machine Learning Algorithms for Empowering the Future IoT Toward 6G Era. IEEE Access 2022, 10, 87535–87562. [Google Scholar] [CrossRef]
- Mukherjee, A.; Goswami, P.; Khan, M.A.; Manman, L.; Yang, L.; Pillai, P. Energy-Efficient Resource Allocation Strategy in Massive IoT for Industrial 6G Applications. IEEE Internet Things J. 2021, 8, 5194–5201. [Google Scholar] [CrossRef]
- Sodhro, A.H.; Zahid, N.; Wang, L.; Pirbhulal, S.; Ouzrout, Y.; Seklouli, A.S.; Neto, A.V.L.; de Macêdo, A.R.L.; de Albuquerque, V.H.C. Toward ML-Based Energy-Efficient Mechanism for 6G Enabled Industrial Network in Box Systems. IEEE Trans. Ind. Inform. 2021, 17, 7185–7192. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, K.; Wu, F.; Leng, S. Collaborative Machine Learning for Energy-Efficient Edge Networks in 6G. IEEE Netw. 2021, 35, 12–19. [Google Scholar] [CrossRef]
- Mahmood, N.H.; Berardinelli, G.; Khatib, E.J.; Hashemi, R.; De Lima, C.; Latva-aho, M. A Functional Architecture for 6G Special-Purpose Industrial IoT Networks. IEEE Trans. Ind. Inform. 2023, 19, 2530–2540. [Google Scholar] [CrossRef]
- Gururaj, H.L.; Natarajan, R.; Almujally, N.A.; Flammini, F.; Krishna, S.; Gupta, S.K. Collaborative Energy-Efficient Routing Protocol for Sustainable Communication in 5G/6G Wireless Sensor Networks. IEEE Open J. Commun. Soc. 2023, 4, 2050–2061. [Google Scholar] [CrossRef]
- Taneja, A.; Rani, S.; Dhanaraj, R.K.; Nkenyereye, L. GCIRM: Towards Green Communication with Intelligent Resource Management Scheme for Radio Access Networks. IEEE Trans. Green Commun. Netw. 2024, 8, 1018–1025. [Google Scholar] [CrossRef]
- Abbas, M.T.; Grinnemo, K.-J.; Ferré, G.; Laurent, P.; Alfredsson, S.; Rajiullah, M.; Eklund, J. Towards zero-energy: Navigating the future with 6G in Cellular Internet of Things. J. Netw. Comput. Appl. 2024, 230, 103945. [Google Scholar] [CrossRef]
- Singh, S.P.; Kumar, N.; Singh, A.; Kant Singh, K.; Askar, S.S.; Abouhawwash, M. Energy Efficient Hybrid Evolutionary Algorithm for Internet of Everything (IoE)-Enabled 6G. IEEE Access 2024, 12, 63839–63852. [Google Scholar] [CrossRef]
- Hou, P.; Jia, H.; Zhu, H.; Lu, Z.; Huang, S.-C.; Yang, Y.; Chai, H. Efficient Edge Server Activation and Service Association for Green Computing in MEC-Enabled Internet of Vehicles. IEEE Trans. Intell. Veh. 2024. [Google Scholar] [CrossRef]
- Pandiyan, P.; Saravanan, S.; Kannadasan, R.; Krishnaveni, S.; Alsharif, M.H.; Kim, M.-K. A comprehensive review of advancements in green IoT for smart grids: Paving the path to sustainability. Energy Rep. 2024, 11, 5504–5531. [Google Scholar] [CrossRef]
- Balaram, A.; Rao, T.D.N.S.S.S.; Rangaree, P.; Siddiqui, S.T.; Gopatoti, A.; Maguluri, L.P. Energy–Efficient Distribution of Resources in Cyber-Physical Internet of Things with 5G/6G Communication Framework. Wirel. Pers. Commun. 2024. [Google Scholar] [CrossRef]
- Moloudian, G.; Hosseinifard, M.; Kumar, S.; Simorangkir, R.B.V.B.; Buckley, J.L.; Song, C.; Fantoni, G.; O’Flynn, B. RF Energy Harvesting Techniques for Battery-Less Wireless Sensing, Industry 4.0, and Internet of Things: A Review. IEEE Sens. J. 2024, 24, 5732–5745. [Google Scholar] [CrossRef]
- Alsamhi, S.H.; Afghah, F.; Sahal, R.; Hawbani, A.; Al-qaness, M.A.A.; Lee, B.; Guizani, M. Green internet of things using UAVs in B5G networks: A review of applications and strategies. Ad Hoc Networks 2021, 117, 102505. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, K.; Hossain, E. Green Internet of Vehicles (IoV) in the 6G Era: Toward Sustainable Vehicular Communications and Networking. IEEE Trans. Green Commun. Netw. 2022, 6, 391–423. [Google Scholar] [CrossRef]
- Xu, X.-R.; Xu, Y.-H.; Suo, L.; Zhou, W.; Yu, G.; Nallanathan, A. UAV-Served Energy Harvesting-Enabled M2M Networks for Green Industry—A Perspective of Energy Efficient Resource Management Scheme. IEEE Trans. Green Commun. Netw. 2023, 7, 1877–1891. [Google Scholar] [CrossRef]
- Babbar, H.; Rani, S.; Bouachir, O.; Aloqaily, M. From Massive IoT Toward IoE: Evolution of Energy Efficient Autonomous Wireless Networks. IEEE Commun. Stand. Mag. 2023, 7, 32–39. [Google Scholar] [CrossRef]
- Hazra, A.; Amgoth, T. CeCO: Cost-Efficient Computation Offloading of IoT Applications in Green Industrial Fog Networks. IEEE Trans. Ind. Inform. 2022, 18, 6255–6263. [Google Scholar] [CrossRef]
- Huang, Y.; Li, M.; Yu, F.R.; Si, P.; Zhang, Y. Performance Optimization for Energy-Efficient Industrial Internet of Things Based on Ambient Backscatter Communication: An A3C-FL Approach. IEEE Trans. Green Commun. Netw. 2023, 7, 1121–1134. [Google Scholar] [CrossRef]
- Hu, N.; Tian, Z.; Du, X.; Guizani, M. An Energy-Efficient In-Network Computing Paradigm for 6G. IEEE Trans. Green Commun. Netw. 2021, 5, 1722–1733. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Dev, K.; Khowaja, P.; and Bellavista, P. Toward Energy-Efficient Distributed Federated Learning for 6G Networks. IEEE Wirel. Commun. 2021, 28, 34–40. [Google Scholar] [CrossRef]
- López, O.L.A.; Alves, H.; Souza, R.D.; Montejo-Sánchez, S.; Fernández, E.M.G.; Latva-Aho, M. Massive Wireless Energy Transfer: Enabling Sustainable IoT Toward 6G Era. IEEE Internet Things J. 2021, 8, 8816–8835. [Google Scholar] [CrossRef]
- Sun, Z.; Qi, F.; Liu, L.; Xing, Y.; Xie, W. Energy-Efficient Spectrum Sharing for 6G Ubiquitous IoT Networks through Blockchain. IEEE Internet Things J. 2023, 10, 9342–9352. [Google Scholar] [CrossRef]
- Yap, K.Y.; Chin, H.H.; Klemeš, J.J. Future outlook on 6G technology for renewable energy sources (RES). Renew. Sustain. Energy Rev. 2022, 167, 112722. [Google Scholar] [CrossRef]
- Chen, N.; Okada, M. Toward 6G Internet of Things and the Convergence with RoF System. IEEE Internet Things J. 2021, 8, 8719–8733. [Google Scholar] [CrossRef]
- Deng, J.; Zeng, J.; Mai, S.; Jin, B.; Yuan, B.; You, Y.; Lu, S.; Yang, M. Analysis and prediction of ship energy efficiency using 6G big data internet of things and artificial intelligence technology. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 824–834. [Google Scholar] [CrossRef]
- Feng, H.; Cui, Z.; Han, C.; Ning, J.; Yang, T. Bidirectional Green Promotion of 6G and AI: Architecture, Solutions, and Platform. IEEE Netw. 2021, 35, 57–63. [Google Scholar] [CrossRef]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A Survey on Green 6G Network: Architecture and Technologies. IEEE Access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Kashyap, P.K.; Kumar, S.; Jaiswal, A.; Kaiwartya, O.; Kumar, M.; Dohare, U.; Gandomi, A.H. DECENT: Deep Learning Enabled Green Computation for Edge Centric 6G Networks. IEEE Trans. Netw. Serv. Manag. 2022, 19, 2163–2177. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, X. 6G: A survey on technologies, scenarios, challenges, and the related issues. J. Ind. Inf. Integr. 2020, 19, 100158. [Google Scholar] [CrossRef]
- Mao, B.; Kawamoto, Y.; Kato, N. AI-Based Joint Optimization of QoS and Security for 6G Energy Harvesting Internet of Things. IEEE Internet Things J. 2020, 7, 7032–7042. [Google Scholar] [CrossRef]
- Chi, H.R.; Wu, C.K.; Huang, N.-F.; Tsang, K.-F.; Radwan, A. A Survey of Network Automation for Industrial Internet-of-Things Toward Industry 5.0. IEEE Trans. Ind. Inform. 2023, 19, 2065–2077. [Google Scholar] [CrossRef]
- Narayanan, A.; Sousa De Sena, A.; Gutierrez-Rojas, D.; Carrillo Melgarejo, D.; Hussain, H.M.; Ullah, M.; Bayhan, S.; Nardelli, P.H.J. Key Advances in Pervasive Edge Computing for Industrial Internet of Things in 5G and Beyond. IEEE Access 2020, 8, 206734–206754. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H.V. 6G Internet of Things: A Comprehensive Survey. IEEE Internet Things J. 2022, 9, 359–383. [Google Scholar] [CrossRef]
- Pan, Q.; Wu, J.; Zheng, X.; Yang, W.; Li, J. Differential Privacy and IRS Empowered Intelligent Energy Harvesting for 6G Internet of Things. IEEE Internet Things J. 2022, 9, 22109–22122. [Google Scholar] [CrossRef]
- Prateek, K.; Ojha, N.K.; Altaf, F.; Maity, S. Quantum secured 6G technology-based applications in Internet of Everything. Telecommun. Syst. 2023, 82, 315–344. [Google Scholar] [CrossRef]
- Quy, V.K.; Nguyen, D.C.; Anh, D.V.; Quy, N.M. Federated learning for green and sustainable 6G IIoT applications. Internet Things 2024, 25, 101061. [Google Scholar] [CrossRef]
- Yu, P.; Yang, M.; Xiong, A.; Ding, Y.; Li, W.; Qiu, X.; Meng, L.; Kadoch, M.; Cheriet, M. Intelligent-Driven Green Resource Allocation for Industrial Internet of Things in 5G Heterogeneous Networks. IEEE Trans. Ind. Inform. 2022, 18, 520–530. [Google Scholar] [CrossRef]
- He, P.; Almasifar, N.; Mehbodniya, A.; Javaheri, D.; Webber, J.L. Towards green smart cities using Internet of Things and optimization algorithms: A systematic and bibliometric review. Sustain. Comput. Inform. Syst. 2022, 36, 100822. [Google Scholar] [CrossRef]
- Liu, X.; Ansari, N.; Sha, Q.; Jia, Y. Efficient Green Energy Far-Field Wireless Charging for Internet of Things. IEEE Internet Things J. 2022, 9, 23047–23057. [Google Scholar] [CrossRef]
- Lu, M.; Fu, G.; Osman, N.B.; Konbr, U. Green energy harvesting strategies on edge-based urban computing in sustainable internet of things. Sustain. Cities Soc. 2021, 75, 103349. [Google Scholar] [CrossRef]
- Mao, B.; Tang, F.; Kawamoto, Y.; Kato, N. AI Models for Green Communications Towards 6G. IEEE Commun. Surv. Tutor. 2022, 24, 210–247. [Google Scholar] [CrossRef]
- Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express 2023, 9, 296–312. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, B.; Zhou, S.; Niu, Z. MEET: Mobility-Enhanced Edge inTelligence for Smart and Green 6G Networks. IEEE Commun. Mag. 2023, 61, 64–70. [Google Scholar] [CrossRef]
- Tang, Y.; Deng, X.; Yi, L.; Xia, Y.; Yang, L.T.; Tang, X. Collaborative Intelligent Confident Information Coverage Node Sleep Scheduling for 6G-Empowered Green IoT. IEEE Trans. Green Commun. Netw. 2023, 7, 1066–1077. [Google Scholar] [CrossRef]
- Verma, S.; Kaur, S.; Khan, M.A.; Sehdev, P.S. Toward Green Communication in 6G-Enabled Massive Internet of Things. IEEE Internet Things J. 2021, 8, 5408–5415. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, S.; Chen, X.; Wang, X. A Novel Energy Efficiency Metric for Next-Generation Green Wireless Communication Network Design. IEEE Internet Things J. 2023, 10, 1746–1760. [Google Scholar] [CrossRef]
- Li, J.; Dai, J.; Issakhov, A.; Almojil, S.F.; Souri, A. Towards decision support systems for energy management in the smart industry and Internet of Things. Comput. Ind. Eng. 2021, 161, 107671. [Google Scholar] [CrossRef]
- Lv, Z.; Lou, R.; Singh, A.K.; Wang, Q. Transfer Learning-powered Resource Optimization for Green Computing in 5G-Aided Industrial Internet of Things. ACM Trans. Internet Technol. 2021, 22, 38. [Google Scholar] [CrossRef]
- Wang, D.; Zhong, D.; Souri, A. Energy management solutions in the Internet of Things applications: Technical analysis and new research directions. Cogn. Syst. Res. 2021, 67, 33–49. [Google Scholar] [CrossRef]
- Xia, D.; Shi, J.; Wan, K.; Wan, J.; Martínez-García, M.; Guan, X. Digital Twin and Artificial Intelligence for Intelligent Planning and Energy-Efficient Deployment of 6G Networks in Smart Factories. IEEE Wirel. Commun. 2023, 30, 171–179. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, H.; Fang, Y.; Yuan, D. Learning-Based Data Transmissions for Future 6G Enabled Industrial IoT: A Data Compression Perspective. IEEE Netw. 2022, 36, 180–187. [Google Scholar] [CrossRef]
- Zhen, L.; Bashir, A.K.; Yu, K.; Al-Otaibi, Y.D.; Foh, C.H.; Xiao, P. Energy-Efficient Random Access for LEO Satellite-Assisted 6G Internet of Remote Things. IEEE Internet Things J. 2021, 8, 5114–5128. [Google Scholar] [CrossRef]
- Liwen, Z.; Qamar, F.; Liaqat, M.; Hindia, M.N.; Ariffin, K.A.Z. Toward Efficient 6G IoT Networks: A Perspective on Resource Optimization Strategies, Challenges, and Future Directions. IEEE Access 2024, 12, 76606–76633. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Al-qaness, M.A.A.; Dahou, A.; Alsamhi, S.H.; Abualigah, L.; Ibrahim, R.A.; Ewees, A.A. Evolution toward intelligent communications: Impact of deep learning applications on the future of 6G technology. WIREs Data Min. Knowl. Discov. 2024, 14, e1521. [Google Scholar] [CrossRef]
- Qi, Y.; Hossain, M.S. Harnessing federated generative learning for green and sustainable Internet of Things. J. Netw. Comput. Appl. 2024, 222, 103812. [Google Scholar] [CrossRef]
- Xu, Q.; You, Q.; Gong, Y.; Yang, X.; Wang, L. RIS-Assisted UAV-Enabled Green Communications for Industrial IoT Exploiting Deep Learning. IEEE Internet Things J. 2024, 11, 26595–26609. [Google Scholar] [CrossRef]
- Matei, A.; Cocoșatu, M. Artificial Internet of Things, Sensor-Based Digital Twin Urban Computing Vision Algorithms, and Blockchain Cloud Networks in Sustainable Smart City Administration. Sustainability 2024, 16, 6749. [Google Scholar] [CrossRef]
- Andronie, M.; Iatagan, M.; Uță, C.; Hurloiu, I.; Dijmărescu, A.; Dijmărescu, I. Big data management algorithms in artificial Internet of Things-based fintech. Oeconomia Copernic. 2023, 14, 769–793. [Google Scholar] [CrossRef]
- Kliestik, T.; Kral, P.; Bugaj, M.; Durana, P. Generative artificial intelligence of things systems, multisensory immersive extended reality technologies, and algorithmic big data simulation and modelling tools in digital twin industrial metaverse. Equilibrium. Q. J. Econ. Econ. Policy 2024, 19, 429–461. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Z.; Zhu, H.; Fan, P.; Fan, Q.; Zhu, H.; Wang, J. Deep Reinforcement Learning Based Power Allocation for Minimizing AoI and Energy Consumption in MIMO-NOMA IoT Systems. Sensors 2023, 23, 9687. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Jahid, A.; Kannadasan, R.; Kim, M.-K. Unleashing the potential of sixth generation (6G) wireless networks in smart energy grid management: A comprehensive review. Energy Rep. 2024, 11, 1376–1398. [Google Scholar] [CrossRef]
- Aldhanhani, T.; Abraham, A.; Hamidouche, W.; Shaaban, M. Future Trends in Smart Green IoV: Vehicle-to-Everything in the Era of Electric Vehicles. IEEE Open J. Veh. Technol. 2024, 5, 278–297. [Google Scholar] [CrossRef]
- Sangeetha, S.; Logeshwaran, J.; Faheem, M.; Kannadasan, R.; Sundararaju, S.; Vijayaraja, L. Smart performance optimization of energy-aware scheduling model for resource sharing in 5G green communication systems. J. Eng. 2024, 2024, e12358. [Google Scholar] [CrossRef]
- Xu, T.; Xu, W.; Du, W.; Zhou, T.; Huang, Y.; Hu, H. When Statistical Signal Transmission Meets Non-Orthogonal Multiple Access: A Potential Solution for Industrial Internet-of-Things. IEEE Internet Things J. 2024. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Topic | Identified | Selected |
---|---|---|
energy-efficient + Industrial Internet of Things | 142 | 21 |
energy-efficient + green | 134 | 19 |
energy-efficient + 6G networks | 128 | 19 |
Type of paper | ||
Original research | 329 | 45 |
Review | 33 | 14 |
Conference proceedings | 22 | 0 |
Book | 11 | 0 |
Editorial | 9 | 0 |
No. | Authors | Nationality | Paper Title | Journal Title | Paper Type | Number of WoS Citations | Ref. |
---|---|---|---|---|---|---|---|
1 | Nguyen, D.C.; Ding, M.; Pathirana, P.N.; Seneviratne, A.; Li, J.; Niyato, D.; Dobre, O.; Poor, H. V. | Australia, China, Singapore, Canada, USA | 6G Internet of Things: A Comprehensive Survey (2022) | IEEE Internet of Things Journal | Review | 384 | [48] |
2 | Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. | China | A Survey on Green 6G Network: Architecture and Technologies (2019) | IEEE Access | Review | 241 | [42] |
3 | Lu, Y.; Zheng, X. | USA | 6G: A survey on technologies, scenarios, challenges, and the related issues (2020) | Journal of Industrial Information Integration | Review | 163 | [44] |
4 | Mao, B., Tang, F.; Kawamoto, Y.; Kato, N. | Japan | AI Models for Green Communications towards 6G (2022) | IEEE Communications Surveys & Tutorials | Original research | 113 | [56] |
5 | Zhen, L.; Bashir, A.K.; Yu, K.; Al-Otaibi, Y.D.; Foh, C.H.; Xiao, P. | China, UK, Japan, Saudi Arabia | Energy-Efficient Random Access for LEO Satellite-Assisted 6G Internet of Remote Things (2021) | IEEE Internet of Things Journal | Original research | 109 | [67] |
6 | Mao, B.; Kawamoto, Y.; Kato, N. | Japan | AI-Based Joint Optimization of QoS and Security for 6G Energy Harvesting Internet of Things (2020) | IEEE Internet of Things Journal | Original research | 108 | [45] |
7 | Alsamhi, S.H.; Afghah, F.; Sahal, R.; Hawbani, A.; Al-qaness, M.A.A.; Lee, B.; Guizani, M. | Ireland, Yemen, USA, China, Qatar | Green internet of things using UAVs in B5G networks: A review of applications and strategies (2021) | Ad Hoc Networks | Review | 103 | [28] |
8 | López, O.L.A.; Alves, H.; Souza, R.D.; Montejo-Sánchez, S.; Fernández, E.M.G.; Latva-Aho, M. | Finland, Brazil, Chile, | Massive Wireless Energy Transfer: Enabling Sustainable IoT toward 6G Era (2021) | IEEE Internet of Things Journal | Original research | 91 | [36] |
9 | Ghiasi, M.; Wang, Z.; Mehrandezh, M.; Jalilian, S.; Ghadimi, N. | Canada, Iran | Evolution of smart grids towards the Internet of energy: concept and essential components for deep decarbonization (2023) | IET Smart Grid | Original research | 90 | [13] |
10 | Malik, U.M., Javed, M.A.; Zeadally, S.; Islam, S. u. | Pakistan, USA | Energy-Efficient Fog Computing for 6G-Enabled Massive IoT: Recent Trends and Future Opportunities (2022) | IEEE Internet of Things Journal | Review | 84 | [12] |
11 | Verma, S.; Kaur, S.; Khan, M.A.; Sehdev, P.S. | India, Saudi Arabia, USA | Toward Green Communication in 6G-Enabled Massive Internet of Things (2021) | IEEE Internet of Things Journal | Original research | 71 | [60] |
12 | Wang, J., Zhu, K.; Hossain, E. | China, Canada | Green Internet of Vehicles (IoV) in the 6G Era: Toward Sustainable Vehicular Communications and Networking (2022) | IEEE Transactions on Green Communications and Networking | Review | 70 | [29] |
13 | Wang, D., Zhong, D.; Souri, A. | China, Malaysia, Turkey | Energy management solutions in the Internet of Things applications: Technical analysis and new research directions (2021) | Cognitive Systems Research | Original research | 46 | [64] |
14 | He, P., Almasifar, N.; Mehbodniya, A.; Javaheri, D.; Webber, J. L. | China, Turkey, Kuwait, Republic of Korea | Towards green smart cities using Internet of Things and optimization algorithms: A systematic and bibliometric review (2022) | Sustainable Computing: Informatics and Systems | Review | 44 | [53] |
15 | Qadir, Z., Le, K.N.; Saeed, N.; Munawar, H.S. | Australia, Saudi Arabia | Towards 6G Internet of Things: Recent advances, use cases, and open challenges (2023) | ICT Express | Review | 42 | [57] |
16 | Li, J.; Dai, J.; Issakhov, A.; Almojil, S.F.; Souri, A. | China, Kazakhstan, Saudi Arabia, Turkey | Towards decision support systems for energy management in the smart industry and Internet of Things (2021) | Computers & Industrial Engineering | Original research | 41 | [62] |
17 | Chi, H.R.; Wu, C.K.; Huang, N.-F.; Tsang, K.-F.; Radwan, A. | Portugal, Hong Kong, Taiwan | A Survey of Network Automation for Industrial Internet-of-Things Toward Industry 5.0 (2023) | IEEE Transactions on Industrial Informatics | Review | 40 | [46] |
18 | Chen, N.; Okada, M. | Japan | Toward 6G Internet of Things and the Convergence with RoF System (2021) | IEEE Internet of Things Journal | Original research | 39 | [39] |
19 | Mahmood, M.R., Matin, M.A.; Sarigiannidis, P.; Goudos, S.K. | Bangladesh, Greece | A Comprehensive Review on Artificial Intelligence/Machine Learning Algorithms for Empowering the Future IoT toward 6G Era (2022) | IEEE Access | Review | 37 | [15] |
20 | Hu, N., Tian, Z.; Du, X.; Guizani, M. | China, USA, Qatar | An Energy-Efficient In-Network Computing Paradigm for 6G (2021) | IEEE Transactions on Green Communications and Networking | Original research | 30 | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, X.; Lăzăroiu, G. Energy-Efficient Industrial Internet of Things in Green 6G Networks. Appl. Sci. 2024, 14, 8558. https://doi.org/10.3390/app14188558
Fernando X, Lăzăroiu G. Energy-Efficient Industrial Internet of Things in Green 6G Networks. Applied Sciences. 2024; 14(18):8558. https://doi.org/10.3390/app14188558
Chicago/Turabian StyleFernando, Xavier, and George Lăzăroiu. 2024. "Energy-Efficient Industrial Internet of Things in Green 6G Networks" Applied Sciences 14, no. 18: 8558. https://doi.org/10.3390/app14188558
APA StyleFernando, X., & Lăzăroiu, G. (2024). Energy-Efficient Industrial Internet of Things in Green 6G Networks. Applied Sciences, 14(18), 8558. https://doi.org/10.3390/app14188558