Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree
Abstract
:1. Introduction
- (1)
- Compilation of a spatial database. A total of 82 debris flows were detected by visual interpretation of aerial photographs with a 50 cm resolution before and after landslide events. The environmental factors were constructed into a spatial database including eight topographic factors: slope gradient, aspect, plan curvature, convexity, mid-slope position (MSP), terrain ruggedness index (TRI), topographic position index (TPI), and landforms; three hydrologic factors: slope length (SL), stream power index (SPI), and topographic wetness index (TWI); four soil factors: land-use, material, thickness, and topography; and three timber factors: age, density, and diameter.
- (2)
- Processing the data from the database. The number of debris flows were randomly divided into training (50%) and validation (50%) data for landslide susceptibility analysis using ANN and BT models.
- (3)
- The influence of environmental factors on landslide occurrences as the training set was calculated as the weight of the factor using both models.
- (4)
- Mapping landslide susceptibility using ANN and BT, and assessing both maps using known landslide occurrences as a validation set.
2. Study Area and Materials
2.1. Precipitation Characteristics
2.2. Landslide Inventory
2.3. Environmental Factors
3. Application of Artificial Neural Network (ANN) and Boosted Tree (BT) Models for Landslide Susceptibility Mapping
3.1. Artificial Neural Network (ANN)
3.2. Boosted Tree (BT)
4. Landslide Susceptibility Mapping and Validation
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, K.S.; Song, Y.S. Geometrical and geotechnical characteristics of landslides in Korea under various geological conditions. J. Mt. Sci. 2015, 12, 1267–1280. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, Y.; Lee, J.K.; Kim, J. The 27 July 2011 debris flows at Umyeonsan, Seoul, Korea. Landslides 2015, 12, 799–813. [Google Scholar] [CrossRef]
- Ro, K.S.; Jeon, B.J.; Jeon, K.W. Induction wall influence review by debris flow’s impact force. J. Korean Soc. Hazard Mitig. 2015, 15, 159–164. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Environ. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. GIS technology in mapping landslide hazard. In Geographical Information Systems in Assessing Natural Hazards; Springer: Dordrecht, The Netherlands, 1995; pp. 135–175. [Google Scholar]
- Carrara, A.; Guzzetti, F.; Cardinali, M.; Reichenbach, P. Use of GIS technology in the prediction and monitoring of landslide hazard. Nat. Hazards 1999, 20, 117–135. [Google Scholar] [CrossRef]
- Carrara, A.; Pugliese-Carratelli, E.; Merenda, L. Computer-based data bank and statistical analysis of slope instability phenomena. Z. Geomorphol. N. F. 1977, 21, 187–222. [Google Scholar]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Soeters, R.; Van Westen, C.J. Slope instability recognition, analysis, and zonation. In Landslides: Investigation and Mitigation; National Academy Press: Washington, DC, USA, 1996; pp. 129–177. [Google Scholar]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Soeters, R.; Sijmons, K. Digital geomorphological landslide hazard mapping of the Alpago area, Italy. ITC J. 2000, 2, 51–60. [Google Scholar] [CrossRef]
- Van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Varnes, D.J. Landslide Hazard Zonation: A Review of Principles and Practice; United Nations: New York, NY, USA, 1984; p. 63. [Google Scholar]
- Choi, J.; Oh, H.-J.; Lee, H.-J.; Lee, C.; Lee, S. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using aster images and GIS. Eng. Geol. 2012, 124, 12–23. [Google Scholar] [CrossRef]
- Lee, M.-J.; Park, I.; Lee, S. Forecasting and validation of landslide susceptibility using an integration of frequency ratio and neuro-fuzzy models: A case study of Seorak mountain area in Korea. Environ. Earth Sci. 2015, 74, 413–429. [Google Scholar] [CrossRef]
- Armaş, I. Weights of evidence method for landslide susceptibility mapping. Prahova subcarpathians, romania. Nat. Hazards 2012, 60, 937–950. [Google Scholar] [CrossRef]
- Wang, L.-J.; Sawada, K.; Moriguchi, S. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Comput. Geosci. 2013, 57, 81–92. [Google Scholar] [CrossRef]
- Pradhan, B. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J. Indian Soc. Remote Sens. 2010, 38, 301–320. [Google Scholar] [CrossRef]
- Tsai, F.; Lai, J.-S.; Chen, W.W.; Lin, T.-H. Analysis of topographic and vegetative factors with data mining for landslide verification. Ecol. Eng. 2013, 61, 669–677. [Google Scholar] [CrossRef]
- Nefeslioglu, H.A.; Sezer, E.; Gokceoglu, C.; Bozkir, A.S.; Duman, T.Y. Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Math. Probl. Eng. 2010, 2010. [Google Scholar] [CrossRef]
- Kim, J.-C.; Lee, S.; Jung, H.-S.; Lee, S. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 2017, 1–16. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2017, 13, 839–856. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- Park, I.; Lee, S. Spatial prediction of landslide susceptibility using a decision tree approach: A case study of the Pyeongchang area, Korea. Int. J. Remote Sens. 2014, 35, 6089–6112. [Google Scholar] [CrossRef]
- Oh, H.-J.; Pradhan, B. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput. Geosci. 2011, 37, 1264–1276. [Google Scholar] [CrossRef]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.-J.; Zhuang, D.-F.; Jiang, D.; Pan, J.-J.; Ren, H.-Y. Assessment of debris flow hazards using a bayesian network. Geomorphology 2012, 171–172, 94–100. [Google Scholar] [CrossRef]
- Song, Y.; Gong, J.; Gao, S.; Wang, D.; Cui, T.; Li, Y.; Wei, B. Susceptibility assessment of earthquake-induced landslides using bayesian network: A case study in Beichuan, China. Comput. Geosci. 2012, 42, 189–199. [Google Scholar] [CrossRef]
- Ballabio, C.; Sterlacchini, S. Support vector machines for landslide susceptibility mapping: The Staffora River Basin case study, Italy. Math. Geosci. 2012, 44, 47–70. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.-H.; Kim, I.-S. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: Case study of Youngin, Korea. Landslides 2007, 4, 327–338. [Google Scholar] [CrossRef]
- Samodra, G.; Chen, G.; Sartohadi, J.; Kasama, K. Comparing data-driven landslide susceptibility models based on participatory landslide inventory mapping in Purwosari area, Yogyakarta, Java. Environ. Earth Sci. 2017, 76, 184. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Ohta, T. Runoff process on a steep forested slope. J. Hydrol. 1988, 102, 165–178. [Google Scholar] [CrossRef]
- Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards 2011, 59, 1413. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Hervas, J.; Van Den Eeckhaut, M.; Legorreta, G.; Trigila, A. Landslide Science and Practice Volume 1: Landslide Inventory and Susceptibility and Hazard Zoning; Introduction; Springer: Berlin, Germany, 2013. [Google Scholar]
- Daum. Available online: http://map.daum.net/ (accessed on 2 March 2017).
- Skymap. Available online: http://www.skymaps.co.kr/ (accessed on 2 March 2017).
- Lee, S.; Song, K.-Y.; Oh, H.-J.; Choi, J. Detection of landslides using web-based aerial photographs and landslide susceptibility mapping using geospatial analysis. Int. J. Remote Sens. 2012, 33, 4937–4966. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Dietrich, W.E. A physically based model for the topographic control on shallow landsliding. Water Resour. Res. 1994, 30, 1153–1171. [Google Scholar] [CrossRef]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis; US Geological Survey: Reston, VA, USA, 2002. [Google Scholar]
- Montrasio, L.; Valentino, R. A model for triggering mechanisms of shallow landslides. Nat. Hazards Earth Syst. Sci. 2008, 8, 1149–1159. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Iwahashi, J.; Pike, R.J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [Google Scholar] [CrossRef]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. Glm versus cca spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic position and landforms analysis. In Proceedings of the Poster Presentation, ESRI User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Gómez, H.; Kavzoglu, T. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 2010, 25, 747–759. [Google Scholar] [CrossRef]
- Paola, J.D.; Schowengerdt, R.A. A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Trans. Geosci. Remote Sens. 1995, 33, 981–996. [Google Scholar] [CrossRef]
- Hines, J.W.; Tsoukalas, L.H.; Uhrig, R.E. Matlab Supplement to Fuzzy and Neural Approaches in Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997; p. 210. [Google Scholar]
- STATISTICA. Boosted Trees for Regression and Classification Overview (Stochastic Gradient Boosting)—Basic Ideas. Available online: http://documentation.statsoft.com/STATISTICAHelp.aspx?path=Gxx/Boosting/BoostingTreesforRegressionandClassificationOverviewStochasticGradientBoostingBasicIdeas (accessed on 1 July 2017).
- Deng, X.; Li, L.; Tan, Y. Validation of spatial prediction models for landslide susceptibility mapping by considering structural similarity. ISPRS Int. J. Geo-Inf. 2017, 6, 103. [Google Scholar] [CrossRef]
- Suleiman, A.; Tight, M.R.; Quinn, A.D. Hybrid neural networks and boosted regression tree models for predicting roadside particulate matter. Environ. Model. Assess. 2016, 21, 731–750. [Google Scholar] [CrossRef]
- Roe, B.P.; Yang, H.-J.; Zhu, J.; Liu, Y.; Stancu, I.; McGregor, G. Boosted decision trees as an alternative to artificial neural networks for particle identification. Nucl. Instrum. Methods Phys. Res. Sect. A 2005, 543, 577–584. [Google Scholar] [CrossRef]
Category | Factors | Data Type | Scale | Source | |
---|---|---|---|---|---|
DEM | Topographic factors | Slope | Grid | 1:5000 | National Geographic Information Institute (NGII) in Korea |
Aspect | |||||
Plan curvature | |||||
Convexity | |||||
Mid-slope position (MSP) | |||||
Terrain ruggedness index (TRI) | |||||
Topographic position index (TPI) | |||||
Landforms | |||||
Hydrologic factors | Slope length (SL) | ||||
Stream power index (SPI) | |||||
Topographic wetness index (TWI) | |||||
Soil map | Land-use | Polygon | 1:5000 | National Academy of Agricultural Science (NAAS) in Korea | |
Material | |||||
Thickness | |||||
Topography | |||||
Forest map | Timber age | Polygon | 1:5000 | Korea Forest Research Institute (KFRI) | |
Timber density | |||||
Timber diameter |
Normalized Weights Based on ANN | Normalized Weights Based on BT | ||
---|---|---|---|
Soil thickness | 0.00 | Soil material | 0.00 |
Plan curvature | 0.05 | Soil thickness | 0.11 |
Aspect | 0.14 | Plan curvature | 0.13 |
Slope length (SL) | 0.19 | Soil topography | 0.18 |
Mid-slope position (MSP) | 0.22 | Landforms | 0.21 |
Soil topography | 0.24 | Mid-slope position (MSP) | 0.27 |
Topographic position index (TPI) | 0.25 | Stream power index (SPI) | 0.33 |
Soil land-use | 0.30 | Soil land-use | 0.34 |
Timber diameter | 0.31 | Convexity | 0.36 |
Terrain ruggedness index (TRI) | 0.35 | Topographic position index (TPI) | 0.42 |
Soil material | 0.37 | Timber density | 0.43 |
Stream power index (SPI) | 0.39 | Aspect | 0.45 |
Timber age | 0.43 | Slope length (SL) | 0.65 |
Convexity | 0.45 | Slope gradient | 0.66 |
Landforms | 0.54 | Topographic wetness index (TWI) | 0.67 |
Timber density | 0.58 | Terrain ruggedness index (TRI) | 0.71 |
Slope gradient | 0.60 | Timber diameter | 0.73 |
Topographic wetness index (TWI) | 1.00 | Timber age | 1.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H.-J.; Lee, S. Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree. Appl. Sci. 2017, 7, 1000. https://doi.org/10.3390/app7101000
Oh H-J, Lee S. Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree. Applied Sciences. 2017; 7(10):1000. https://doi.org/10.3390/app7101000
Chicago/Turabian StyleOh, Hyun-Joo, and Saro Lee. 2017. "Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree" Applied Sciences 7, no. 10: 1000. https://doi.org/10.3390/app7101000
APA StyleOh, H. -J., & Lee, S. (2017). Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree. Applied Sciences, 7(10), 1000. https://doi.org/10.3390/app7101000