On New Estimates of q-Hermite–Hadamard Inequalities with Applications in Quantum Calculus
Abstract
:1. Introduction
2. Preliminaries of -Calculus
3. -Trapezoidal Inequalities
4. -Midpoint Inequalities
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, K.; Sher, M.; Ali, A.; Abdeljawad, T. On degree theory for non-monotone type fractional order delay differential equations. AIMS Math. 2022, 7, 9479–9492. [Google Scholar] [CrossRef]
- Ahmad, S.W.; Sarwar, M.; Shah, K.; Eiman; Abdeljawad, T. Study of a coupled system with sub-strip and multi-valued boundary conditions via topological degree theory on an infinite domain. Symmetry 2022, 14, 841. [Google Scholar] [CrossRef]
- Shah, K.; Arfan, M.; Ullah, A.; Al-Mdallal, Q.; Ansari, K.J.; Abdeljawad, T. Computational study on the dynamics of fractional order differential equations with applications. Chaos Solitons Fractals 2022, 157, 111955. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus: New Concepts, Impulsive IVPs and BVPs, Inequalities; World Scientific: Singapore, 2016. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2001. [Google Scholar]
- Abbas, S.; Benchohra, M.; Graef, J.R. Oscillation and nonoscillation results for the Caputo fractional q-difference equations and inclusions. J. Math. Sci. 2021, 258, 577–593. [Google Scholar] [CrossRef]
- Patanarapeelert, N.; Sitthiwirattham, T. On four-point fractional q-integro-difference boundary value problems involving separate nonlinearity and arbitrary fraction order. Bound. Value Probl. 2018, 2018, 41. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Yu, C.; Zhang, B.; Wang, S. Positive solutions for eigenvalue problems of fractional q-difference equation with ϕ-Laplacian. Adv. Differ. Equ. 2021, 2021, 499. [Google Scholar] [CrossRef]
- Ouncharoen, R.; Patanarapeelert, N.; Sitthiwirattham, T. Nonlocal q-symmetric integral boundary value problem for sequential q-symmetric integro-difference equations. Mathematics 2018, 6, 218. [Google Scholar] [CrossRef] [Green Version]
- Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19. [Google Scholar] [CrossRef]
- Etemad, S.; Ntouyas, S.K.; Ahmad, B. Existence theory for a fractional q-integro-difference equation with q-integral boundary conditions of different orders. Mathematics 2019, 7, 659. [Google Scholar] [CrossRef]
- Butt, R.I.; Abdeljawad, T.; Alqudah, M.A.; Rehman, M.U. Ulam stability of Caputo q-fractional delay difference equation: q-fractional Gronwall inequality approach. J. Inequalities Appl. 2019, 2019, 305. [Google Scholar] [CrossRef]
- Alzabut, J.; Mohammadaliee, B.; Samei, M.E. Solutions of two fractional q-integro-differential equations under sum and integral boundary value conditions on a time scale. Adv. Differ. Equ. 2020, 2020, 304. [Google Scholar] [CrossRef]
- Rezapour, S.; Imran, A.; Hussain, A.; Martinez, F.; Etemad, S.; Kaabar, M.K.A. Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 2021, 13, 469. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Alzabut, J.; Hussain, A.; Subramanian, M.; Rezapour, S. On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv. Differ. Equ. 2021, 2021, 367. [Google Scholar] [CrossRef]
- Phuong, N.D.; Sakar, F.M.; Etemad, S.; Rezapour, S. A novel fractional structure of a multi-order quantum multi-integro-differential problem. Adv. Differ. Equ. 2020, 2020, 633. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs, Victoria University: Footscray, VIC, Australia, 2000. [Google Scholar]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Ali, M.A.; Alp, N.; Budak, H.; Chu, Y.-M.; Zhang, Z. On some new quantum midpoint type inequalities for twice quantum differentiable convex functions. Open Math. 2021, 19, 427–439. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives. Adv. Differ. Equ. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z. Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. E-Notes 2020, 20, 341–356. [Google Scholar]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Ding, Y.; Kalsoom, H.; Wu, S. Some new quantum Hermite–Hadamard-type estimates within a class of generalized (s,m)-preinvex functions. Symmetry 2019, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hefeng, Z. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2016, 7, 501–522. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus. Math. Meth. Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y.-M. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Differ. Equ. 2021, 2021, 1–21. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
- Kalsoom, H.; Wu, J.-D.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.A.; Chu, Y.-M.; Budak, H.; Akkurt, A.; Yildrim, H. Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables. Adv. Differ. Equ. 2021, 2021, 1–26. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Alp, N.; Chu, Y.-M. Quantum Ostrowski type integral inequalities. J. Math. Inequal. 2021; in press. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 1–19. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Sial, I.B.; Mei, S.; Ali, M.A.; Nanlaopon, K. On some generalized Simpson’s and Newton’s inequalities for (α,m)-convex functions in q-calculus. Mathematics 2021, 2021, 3266. [Google Scholar] [CrossRef]
- Soontharanon, J.; Ali, M.A.; Budak, H.; Nanlaopon, K.; Abdullah, Z. Simpson’s and Newton’s Inequalities for (α,m)-Convex Functions via Quantum Calculus. Symmetry 2022, 14, 736. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chasreechai, S.; Ali, M.A.; Ashraf, M.A.; Sitthiwirattham, T.; Etemad, S.; Sen, M.D.l.; Rezapour, S. On New Estimates of q-Hermite–Hadamard Inequalities with Applications in Quantum Calculus. Axioms 2023, 12, 49. https://doi.org/10.3390/axioms12010049
Chasreechai S, Ali MA, Ashraf MA, Sitthiwirattham T, Etemad S, Sen MDl, Rezapour S. On New Estimates of q-Hermite–Hadamard Inequalities with Applications in Quantum Calculus. Axioms. 2023; 12(1):49. https://doi.org/10.3390/axioms12010049
Chicago/Turabian StyleChasreechai, Saowaluck, Muhammad Aamir Ali, Muhammad Amir Ashraf, Thanin Sitthiwirattham, Sina Etemad, Manuel De la Sen, and Shahram Rezapour. 2023. "On New Estimates of q-Hermite–Hadamard Inequalities with Applications in Quantum Calculus" Axioms 12, no. 1: 49. https://doi.org/10.3390/axioms12010049