Integrable Couplings and Two-Dimensional Unital Algebras
Abstract
:1. Introduction
2. Integrable Couplings via Two-Dimensional Algebras
2.1. Perturbation Equations
2.2. -Extensions
3. Conclusions and Discussion
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, W.X.; Fuchssteiner, B. Integrable theory of the perturbation equations. Chaos Solitons Fractals 1996, 7, 1227–1250. [Google Scholar] [CrossRef]
- Ma, W.X.; Xu, X.X.; Zhang, Y.F. Semi-direct sums of Lie algebras and continuous integrable couplings. Phys. Lett. A 2006, 351, 125–130. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.H. Two integrable couplings of the Tu hierarchy and their Hamiltonian structures. Comput. Math. Appl. 2008, 55, 2643–2652. [Google Scholar] [CrossRef]
- Xu, X.X. Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian structures. J. Phys. A Math. Theor. 2009, 42, 395201. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H.W. Coupling commutator pairs and integrable systems. Chaos Solitons Fractals 2009, 39, 1109–1120. [Google Scholar] [CrossRef]
- You, F.C. Nonlinear super integrable Hamiltonian couplings. J. Math. Phys. 2011, 52, 123510. [Google Scholar] [CrossRef]
- Wu, J.Z.; Xing, X.Z.; Geng, X.G. Integrable couplings of fractional L-hierarchy and its Hamiltonian structures. Math. Methods Appl. Sci. 2006, 39, 3925–3931. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. A new multi-component integrable coupling and its application to isospectral and nonisospectral problems. Commun. Nonlinear Sci. Numer. Simul. 2022, 105, 106075. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wang, H.F. Integrable couplings of two expanded non-isospectral soliton hierarchies and their bi-Hamiltonian structures. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250160. [Google Scholar] [CrossRef]
- Ma, W.X. Nonlinear continuous integrable Hamiltonian couplings. Appl. Math. Comput. 2011, 217, 7238–7244. [Google Scholar] [CrossRef]
- Xia, T.C.; Yu, F.J.; Zhang, Y. The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions. Phys. A 2004, 343, 238–246. [Google Scholar] [CrossRef]
- Xu, X.X. An integrable coupling hierarchy of the Mkdv_integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy. Appl. Math. Comput. 2010, 216, 344–353. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Cheng, H.B.; Li, X.Y.; Li, C.Z. Integrable nonlinear perturbed hierarchies of NLS-mKDV equation and soliton solutions. Electr. J. Differ. Equ. 2022, 2022, 71. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable couplings and matrix loop algebras. In Nonlinear and Modern Mathematical Physics; Ma, W.X., Kaup, D., Eds.; AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2013; Volume 1562, pp. 105–122. [Google Scholar]
- Ma, W.X.; Zhu, Z.N. Constructing nonlinear discrete integrable Hamiltonian couplings. Comput. Math. Appl. 2010, 60, 2601–2608. [Google Scholar] [CrossRef]
- Study, E. Über Systeme complexer Zahlen und ihre Anwendung in der Theorie der Transformationsgruppen. Monatshefte Math. Phys. 1890, 1, 283–354. [Google Scholar] [CrossRef]
- Fuchssteiner, B. Application of hereditary symmetries to nonlinear evolution equations. Nonlinear Anal. 1979, 3, 849–862. [Google Scholar] [CrossRef]
- Dimakis, A.; Müller-Hoissen, F. Bi-differential calculi and integrable models. J. Phys. A Math. Gen. 2000, 33, 957–974. [Google Scholar] [CrossRef]
- Ma, W.X.; Pavlov, M. Extending Hamiltonian operators to get bi-Hamiltonian coupled KdV systems. Phys. Lett. A 1998, 246, 511–522. [Google Scholar] [CrossRef]
- Gürses, M.; Pekcan, A. On SK and KK integrable systems. arXiv 2024, arXiv:2404.00671. [Google Scholar]
- Zhao, Q.L.; Jia, M.; Lou, S.Y. Fifth-order Alice-Bob systems and their abundant periodic and solitary wave solutions. Commun. Theor. Phys. 2019, 71, 1149–1154. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Ma, W.X. A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem. Commun. Theor. Phys. 2024, 76, 075001. [Google Scholar] [CrossRef]
- Yang, J.Y.; Ma, W.X. Four-component Liouville integrable models and their bi-Hamiltonian formulations. Rom. J. Phys. 2024, 69, 101. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H.W. Applications of the Lie algebra gl(2). Mod. Phys. Lett. B 2009, 23, 1763–1770. [Google Scholar] [CrossRef]
- Ma, W.X.; Strampp, W. Bilinear forms and Bäcklund transformations of the perturbation systems. Phys. Lett. A 2005, 341, 441–449. [Google Scholar] [CrossRef]
- Sun, Y.P.; Zhao, H.Q. New non-isospectral integrable couplings of the AKNS system. Appl. Math. Comput. 2008, 203, 163–170. [Google Scholar] [CrossRef]
- George, R.K.; Chalishajar, D.N.; Nandakumaran, A.K. Exact controllability of the nonlinear third-order dispersion equation. J. Math. Anal. Appl. 2007, 332, 1028–1044. [Google Scholar] [CrossRef]
- Sandrasekaran, V.; Kasinathan, R.; Kasinathan, R.; Chalishajar, D.; Kasinathan, D. Fractional stochastic Schrödinger evolution system with complex potential and poisson jumps: Qualitative behavior and T-controllability. Partial Differ. Equ. Appl. Math. 2024, 10, 100713. [Google Scholar] [CrossRef]
- Ma, W.X. Loop algebras and bi-integrable couplings. Chin. Ann. Math. Ser. B 2012, 33, 207–224. [Google Scholar] [CrossRef]
- Ma, W.X.; Meng, J.H.; Zhang, H.Q. Tri-integrable couplings by matrix loop algebras. Int. J. Nonlinear Sci. Numer. Simul. 2013, 14, 377–388. [Google Scholar] [CrossRef]
- Wang, L.; Tang, Y.N. Tri-integrable couplings of the Giachetti-Johnson soliton hierarchy as well as their Hamiltonian structure. Abstr. Appl. Anal. 2014, 2014, 627924. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-X. Integrable Couplings and Two-Dimensional Unital Algebras. Axioms 2024, 13, 481. https://doi.org/10.3390/axioms13070481
Ma W-X. Integrable Couplings and Two-Dimensional Unital Algebras. Axioms. 2024; 13(7):481. https://doi.org/10.3390/axioms13070481
Chicago/Turabian StyleMa, Wen-Xiu. 2024. "Integrable Couplings and Two-Dimensional Unital Algebras" Axioms 13, no. 7: 481. https://doi.org/10.3390/axioms13070481
APA StyleMa, W. -X. (2024). Integrable Couplings and Two-Dimensional Unital Algebras. Axioms, 13(7), 481. https://doi.org/10.3390/axioms13070481