Inertial Subgradient Extragradient Methods for Solving Variational Inequality Problems and Fixed Point Problems
Abstract
:1. Introduction
2. Preliminaries
- (i)
- for all
- (ii)
- for all
- (iii)
- Given and Then we have
- (i)
- A is said to be L-Lipschitz continuous with if
- (ii)
- A is said to be monotone if
- (iii)
- The mapping is said to be pseudomonotone in the sense of Karamardian [21] or K-pseudomonotone for short, if for all
- (a)
- (b)
3. Main Results
3.1. The Viscosity Inertial Subgradient Extragradient Algorithm
3.2. Picard–Mann Hybrid Type Inertial Subgradient Extragradient Algorithm
4. Numerical Illustrations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. 1964, 258, 4413–4416. [Google Scholar]
- Browder, F.E. The fixed point theory of multivalued mapping in topological vector spaces. Math. Ann. 1968, 177, 283–301. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 2011, 148, 318–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Censor, Y.; Gibali, A.; Reich, S. Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 2011, 26, 827–845. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. Algorithms for the split variational inequality problem. Numer. Algorithm 2012, 59, 301–323. [Google Scholar] [CrossRef]
- Censor, Y.; Gibali, A.; Reich, S. Extensions of Korpelevich’s extragradient method for the variational inequality problem in Euclidean space. Optimization 2012, 61, 1119–1132. [Google Scholar] [CrossRef]
- Gibali, A.; Shehu, Y. An efficient iterative method for finding common fixed point and variational inequalities in Hilbert spaces. Optimization 2019, 68, 13–32. [Google Scholar] [CrossRef]
- Gibali, A.; Ha, N.H.; Thuong, N.T.; Trang, T.H.; Vinh, N.T. Polyak’s gradient method for solving the split convex feasibility problem and its applications. J. Appl. Numer. Optim. 2019, 1, 145–156. [Google Scholar]
- Khan, A.R.; Ugwunnadi, G.C.; Makukula, Z.G.; Abbas, M. Strong convergence of inertial subgradient extragradient method for solving variational inequality in Banach space. Carpathian J. Math. 2019, 35, 327–338. [Google Scholar]
- Maingé, P.E. Projected subgradient techniques and viscosity for optimization with variational inequality constraints. Eur. J. Oper. Res. 2010, 205, 501–506. [Google Scholar] [CrossRef]
- Thong, D.V.; Vinh, N.T.; Cho, Y.J. Accelerated subgradient extragradient methods for variational inequality problems. J. Sci. Comput. 2019, 80, 1438–1462. [Google Scholar] [CrossRef]
- Wang, F.; Pham, H. On a new algorithm for solving variational inequality and fixed point problems. J. Nonlinear Var. Anal. 2019, 3, 225–233. [Google Scholar]
- Wang, L.; Yu, L.; Li, T. Parallel extragradient algorithms for a family of pseudomonotone equilibrium problems and fixed point problems of nonself-nonexpansive mappings in Hilbert space. J. Nonlinear Funct. Anal. 2020, 2020, 13. [Google Scholar]
- Alber, Y.I.; Iusem, A.N. Extension of subgradient techniques for nonsmooth optimization in Banach spaces. Set Valued Anal. 2001, 9, 315–335. [Google Scholar] [CrossRef]
- Xiu, N.H.; Zhang, J.Z. Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 2003, 152, 559–587. [Google Scholar] [CrossRef] [Green Version]
- Korpelevich, G.M. The extragradient method for finding saddle points and other problems. Ekon. Mat. Metod. 1976, 12, 747–756. [Google Scholar]
- Farouq, N.E. Pseudomonotone variational inequalities: Convergence of proximal methods. J. Optim. Theory Appl. 2001, 109, 311–326. [Google Scholar] [CrossRef]
- Hadjisavvas, N.; Schaible, S.; Wong, N.-C. Pseudomonotone operators: A survey of the theory and its applications. J. Optim. Theory Appl. 2012, 152, 1–20. [Google Scholar] [CrossRef]
- Kien, B.T.; Lee, G.M. An existence theorem for generalized variational inequalities with discontinuous and pseudomonotone operators. Nonlinear Anal. 2011, 74, 1495–1500. [Google Scholar] [CrossRef]
- Yao, J.-C. Variational inequalities with generalized monotone operators. Math. Oper. Res. 1994, 19, 691–705. [Google Scholar] [CrossRef]
- Karamardian, S. Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 1976, 18, 445–454. [Google Scholar] [CrossRef]
- Attouch, H.; Goudon, X.; Redont, P. The heavy ball with friction. I. The continuous dynamical system. Commun. Contemp. Math. 2000, 2, 1–34. [Google Scholar] [CrossRef]
- Attouch, H.; Czamecki, M.O. Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 2002, 179, 278–310. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, F.; Attouch, H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 2001, 9, 3–11. [Google Scholar] [CrossRef]
- Maingé, P.E. Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 2007, 15, 67–69. [Google Scholar] [CrossRef]
- Maingé, P.E. Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 2008, 219, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Bot, R.I.; Csetnek, E.R.; Hendrich, C. Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 2015, 256, 472–487. [Google Scholar]
- Attouch, H.; Peypouquet, J.; Redont, P. A dynamical approach to an inertial forward-backward algorithm for convex minimization. SIAM J. Optim. 2014, 24, 232–256. [Google Scholar] [CrossRef]
- Chen, C.; Chan, R.H.; Ma, S.; Yang, J. Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 2015, 8, 2239–2267. [Google Scholar] [CrossRef]
- Bot, R.I.; Csetnek, E.R. A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 2015, 36, 951–963. [Google Scholar] [CrossRef] [Green Version]
- Bot, R.I.; Csetnek, E.R. An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algor. 2016, 71, 519–540. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.Q.; Cho, Y.J.; Zhong, L.L.; Rassias, T.M. Inertial projection and contraction algorithms for variational inequalities. J. Glob. Optim. 2018, 70, 687–704. [Google Scholar] [CrossRef]
- Thong, D.V.; Hieu, D.V. Modified Tseng’s extragradient algorithms for variational inequality problems. J. Fixed Point Theory Appl. 2018, 20, 152. [Google Scholar] [CrossRef]
- Moudafi, A. Viscosity approximations methods for fixed point problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H. A Picard-Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 2013, 69. [Google Scholar] [CrossRef]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Maingé, P.E. A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 2008, 47, 1499–1515. [Google Scholar] [CrossRef]
- Liu, L.S. Ishikawa and Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Anal. Appl. 1995, 194, 114–125. [Google Scholar] [CrossRef] [Green Version]
- Suantai, S.; Pholasa, N.; Cholamjiak, P. The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Ind. Manag. Optim. 2018, 14, 1595–1615. [Google Scholar] [CrossRef] [Green Version]
- Kraikaew, R.; Saejung, S. Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces. J. Optim. Theory Appl. 2014, 163, 399–412. [Google Scholar] [CrossRef]
- Tseng, P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 2000, 38, 431–446. [Google Scholar] [CrossRef]
Methods | ||||||
---|---|---|---|---|---|---|
Sec. | Iter. | Error. | Sec. | Iter. | Error. | |
Algorithm 3.1 | 0.0022 | 10 | 1.1891 × | 0.0018 | 9 | 4.8894 × |
Algorithm 3.2 | 0.0019 | 8 | 4.7288 × | 0.0014 | 7 | 5.3503 × |
Algorithm of Kraikaew et al. | 0.4063 | 2287 | 9.9981 × | 0.1719 | 1065 | 9.9924 × |
Algorithm of Mainge | 0.1250 | 2287 | 9.9981 × | 0.0469 | 1065 | 9.9924 × |
Methods | m = 50 | m = 100 | ||||
---|---|---|---|---|---|---|
Sec. | Iter. | Error. | Sec. | Iter. | Error. | |
Algorithm 3.1 | 0.08 | 10 | 6.9882 × | 0.14063 | 10 | 6.6947 × |
Algorithm 3.2 | 0.078 | 8 | 9.0032 × | 0.1 | 9 | 9.9385 × |
TEGM | 4.2438 | 1000 | 0.0849 | 9.4531 | 1000 | 0.2646 |
ITEGM | 4.5188 | 1000 | 0.0790 | 9.6875 | 1000 | 0.2594 |
SEGM | 4.3969 | 1000 | 0.0850 | 9.5156 | 1000 | 0.2647 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okeke, G.A.; Abbas, M.; de la Sen, M. Inertial Subgradient Extragradient Methods for Solving Variational Inequality Problems and Fixed Point Problems. Axioms 2020, 9, 51. https://doi.org/10.3390/axioms9020051
Okeke GA, Abbas M, de la Sen M. Inertial Subgradient Extragradient Methods for Solving Variational Inequality Problems and Fixed Point Problems. Axioms. 2020; 9(2):51. https://doi.org/10.3390/axioms9020051
Chicago/Turabian StyleOkeke, Godwin Amechi, Mujahid Abbas, and Manuel de la Sen. 2020. "Inertial Subgradient Extragradient Methods for Solving Variational Inequality Problems and Fixed Point Problems" Axioms 9, no. 2: 51. https://doi.org/10.3390/axioms9020051