Technologies for Biogas Upgrading to Biomethane: A Review
Abstract
:1. Introduction
2. Biogas Upgrading via Carbon Dioxide Removal Technologies
3. Biogas Upgrading via Carbon Dioxide Utilization Technologies
3.1. Chemical Processes
3.2. Biological Processes
3.3. Assessment on Feasibility of Biogas Upgrading
3.3.1. Cost Estimation
3.3.2. Advantages and Disadvantages
4. Novel Technologies in Carbon Dioxide Conversion
4.1. Simultaneous Biogas Upgrading and Bio-Succinic Acid Production
→ Natural Gas (95% CH4) + Succinate
4.2. Future Perspective of Succinic Acid Production
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Goede, A.; van de Sanden, R. CO2-Neutral fuels. Europhys. News 2016, 47, 22–26. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Masse, D.I.; Talbot, G.; Gilbert, Y. A scientific review of the agronomic, environmental and social benefits of anaerobic digestion. In Anaerobic Digestions; Caruana, D.J., Olsen, E.A., Eds.; Nova Science Publishers: New York, NY, USA, 2012; pp. 109–131. ISBN 978-1-62081-610-3. [Google Scholar]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes: An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Muhammad Nasir, I.; Mohd Ghazi, T.I.; Omar, R. Production of biogas from solid organic wastes through anaerobic digestion: A review. Appl. Microbiol. Biotechnol. 2012, 95, 321–329. [Google Scholar] [CrossRef]
- Carlsson, M.; Lagerkvist, A.; Morgan-Sagastume, F. The effects of substrate pre-treatment on anaerobic digestion systems: A review. Waste Manag. 2012, 32, 1634–1650. [Google Scholar] [CrossRef]
- Long, J.H.; Aziz, T.N.; Reyes, F.L.; de los Ducoste, J.J. Anaerobic co-digestion of fat, oil, and grease (FOG): A review of gas production and process limitations. Process Saf. Environ. Prot. 2012, 90, 231–245. [Google Scholar] [CrossRef]
- Montalvo, S.; Guerrero, L.; Borja, R.; Sánchez, E.; Milán, Z.; Cortés, I.; de la la Rubia, M.A. Application of natural zeolites in anaerobic digestion processes: A review. Appl. Clay Sci. 2012, 58, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Raboni, M.; Urbini, G. Production and use of biogas in Europe: A survey of current status and perspectives. Ambient. Agua 2014, 9. [Google Scholar] [CrossRef]
- Kárászová, M.; Sedláková, Z.; Izák, P. Gas permeation processes in biogas upgrading: A short review. Chem. Pap. 2015, 69, 1277–1283. [Google Scholar] [CrossRef]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of appropriate biogas upgrading technology—A review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- Kougias, P.G.; Treu, L.; Benavente, D.P.; Boe, K.; Campanaro, S.; Angelidaki, I. Ex-situ biogas upgrading and enhancement in different reactor systems. Bioresour. Technol. 2017, 225, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, N.; Boivin, S. A review of biogas purification processes. Biofuels Bioprod. Biorefin. 2009, 3, 42–71. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Bauer, F.; Persson, T.; Hulteberg, C.; Tamm, D. Biogas upgrading—Technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefin. 2013, 7, 499–511. [Google Scholar] [CrossRef]
- Aziz, N.I.H.A.; Hanafiah, M.M.; Gheewala, S.H. A review on life cycle assessment of biogas production: Challenges and future perspectives in Malaysia. Biomass Bioenergy 2019, 122, 361–374. [Google Scholar] [CrossRef]
- García-Gutiérrez, P.; Jacquemin, J.; McCrellis, C.; Dimitriou, I.; Taylor, S.F.R.; Hardacre, C.; Allen, R.W.K. Techno-economic feasibility of selective CO2 capture processes from biogas streams using ionic liquids as physical absorbents. Energy Fuels 2016, 30, 5052–5064. [Google Scholar] [CrossRef]
- Andriani, D.; Wresta, A.; Atmaja, T.D.; Saepudin, A. A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl. Biochem. Biotechnol. 2014, 172, 1909–1928. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz. 2017, 8, 267–283. [Google Scholar] [CrossRef]
- Leonzio, G. Upgrading of biogas to bio-methane with chemical absorption process: Simulation and environmental impact. J. Clean. Prod. 2016, 131, 364–375. [Google Scholar] [CrossRef]
- Xia, A.; Cheng, J.; Murphy, J.D. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnol. Adv. 2016, 34, 451–472. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.; Esteves, S.; Dinsdale, R.; Guwy, A. An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 2011, 39, 1806–1816. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tock, L.; Gassner, M.; Maréchal, F. Thermochemical production of liquid fuels from biomass: Thermo-economic modeling, process design and process integration analysis. Biomass Bioenergy 2010, 34, 1838–1854. [Google Scholar] [CrossRef]
- Zhao, Q.; Leonhardt, E.; MacConnell, C.; Frear, C.; Chen, S. Purification technologies for biogas generated by anaerobic digestion. In Climate Friendly Farming—Final Report; Center for Sustaining Agriculture and Natural Resources: Washington, DC, USA, 2010; p. 24. [Google Scholar]
- Hoyer, K.; Hulteberg, C.; Svensson, M.; Jenberg, J.; NØrregÅrd, Ø. Biogas Upgrading: A Technical Review; Energiforsk: Stockholm, Sweeden, 2016; ISBN 9789176732755. [Google Scholar]
- Zhou, K.; Chaemchuen, S.; Verpoort, F. Alternative materials in technologies for biogas upgrading via CO2 capture. Renew. Sustain. Energy Rev. 2017, 79, 1414–1441. [Google Scholar] [CrossRef]
- Ullah Khan, I.; Hafiz Dzarfan Othman, M.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Wan Azelee, I. Biogas as a renewable energy fuel—A review of biogas upgrading, utilisation and storage. Energy Convers. Manag. 2017, 150, 277–294. [Google Scholar] [CrossRef]
- Lasocki, J.; Kołodziejczyk, K.; Matuszewska, A. Laboratory-scale investigation of biogas treatment by removal of hydrogen sulfide and carbon dioxide. Polish J. Environ. Stud. 2015, 24, 1427–1434. [Google Scholar] [CrossRef]
- Georgiou, D.; Petrolekas, P.D.; Hatzixanthis, S.; Aivasidis, A. Absorption of carbon dioxide by raw and treated dye-bath effluents. J. Hazard. Mater. 2007, 144, 369–376. [Google Scholar] [CrossRef]
- Deng, L.; Hägg, M.B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int. J. Greenh. Gas Control 2010, 4, 638–646. [Google Scholar] [CrossRef]
- Ho, M.T.; Allinson, G.W.; Wiley, D.E. Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind. Eng. Chem. Res. 2008, 47, 4883–4890. [Google Scholar] [CrossRef]
- Augelletti, R.; Conti, M.; Annesini, M.C. Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J. Clean. Prod. 2017, 140, 1390–1398. [Google Scholar] [CrossRef]
- An, H.; Feng, B.; Su, S. CO2 capture by electrothermal swing adsorption with activated carbon fibre materials. Int. J. Greenh. Gas Control 2011, 5, 16–25. [Google Scholar] [CrossRef]
- Plaza, M.G.; García, S.; Rubiera, F.; Pis, J.J.; Pevida, C. Post-combustion CO2 capture with a commercial activated carbon: Comparison of different regeneration strategies. Chem. Eng. J. 2010, 163, 41–47. [Google Scholar] [CrossRef]
- Petersson, A.; Wellinger, A. Biogas Upgrading Technologies—Developments and Innovations; IEA Bioenergy: Paris, France, 2009; p. 20. [Google Scholar]
- Bauer, F.; Hulteberg, C.; Persson, T.; Tamm, D.; Granskning, B. Biogas Upgrading—Review of Commercial Technologies; Svenskt Gastekniskt Center AB: Malmo, Sweeden, 2013. [Google Scholar]
- Harasimowicz, M.; Orluk, P.; Zakrzewska-Trznadel, G.; Chmielewski, A.G. Application of polyimide membranes for biogas purification and enrichment. J. Hazard. Mater. 2007, 144, 698–702. [Google Scholar] [CrossRef]
- Munoz, R.; Meier, L.; Diaz, I.; Jeison, D. A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev. Environ. Sci. Biotechnol. 2015, 14, 727–759. [Google Scholar] [CrossRef] [Green Version]
- Green, D.W.; Perry, R.H. Perry’s Chemical Engineers’ Hand Book, 8th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Grande, C.A.; Blom, R. Cryogenic adsorption of methane and carbon dioxide on zeolites 4A and 13X. Energy Fuels 2014, 28, 6688–6693. [Google Scholar] [CrossRef]
- Marsh, M.; Officer, C.E.; Krich, K.; Krich, K.; Augenstein, D.; Benemann, J.; Rutledge, B.; Salour, D. Biomethane from Dairy Waste: A Sourcebook for the Production and Use of Renewable Natural Gas in California; Suscon: San Francisco, CA, USA, 2005. [Google Scholar]
- Cecchi, F.; Cavinato, C. Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects. Waste Manag. Res. 2015, 33, 429–438. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Meng, Y.; Yan, F.; Aihemaiti, A. A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers. Manag. 2018, 171, 133–155. [Google Scholar] [CrossRef]
- Aresta, M. Carbon Dioxide as Chemical Feedstock, 1st ed.; Wiley-VCH: Weinheim, Germany, 2010. [Google Scholar]
- Williams, M. The merck index: An encyclopedia of chemicals, drugs, and biologicals, 14th ed.; Merck Inc.: Rahway, NJ, USA, 2006; 2564p. [Google Scholar]
- Stangeland, K.; Kalai, D.; Li, H.; Yu, Z. CO2 Methanation: The effect of catalysts and reaction conditions. Energy Procedia 2017, 105, 2022–2027. [Google Scholar] [CrossRef]
- Jürgensen, L.; Augustine, E.; Born, J.; Holm-nielsen, J.B. Bioresource technology dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation. Bioresource Technol. 2015, 178, 323–329. [Google Scholar]
- U.S. Energy Information Administration (EIA). International Energy Outlook 2017; EIA: Washington, DC, USA, 2017.
- Su, X.; Xu, J.; Liang, B.; Duan, H.; Hou, B.; Huang, Y. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies. J. Energy Chem. 2016, 25, 553–565. [Google Scholar] [CrossRef]
- Hashemnejad, S.M.; Parvari, M. Deactivation and regeneration of nickel-based catalysts for steam-methane reforming. Chin. J. Catal. 2011, 32, 273–279. [Google Scholar] [CrossRef]
- Mutz, B.; Gänzler, A.M.; Nachtegaal, M.; Müller, O.; Frahm, R.; Kleist, W.; Grunwaldt, J.-D. Surface oxidation of supported ni particles and its impact on the catalytic performance during dynamically operated methanation of CO2. Catalysts 2017, 7, 279. [Google Scholar] [CrossRef]
- National Academies of Sciences Engineering and Medicine Gaseous Carbon Waste Streams Utilization. In Gaseous Carbon Waste Streams Utilization: Status and Research Needs; The National Academies Press: Washington, DC, USA, 2019; pp. 63–95. ISBN 978-0-309-48336-0.
- Manthiram, K.; Beberwyck, B.J.; Alivisatos, A.P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 2014, 136, 13319–13325. [Google Scholar] [CrossRef]
- Qiu, Y.-L.; Zhong, H.-X.; Zhang, T.-T.; Xu, W.-B.; Li, X.-F.; Zhang, H.-M. Copper electrode fabricated via pulse electrodeposition: Toward high methane selectivity and activity for CO2 electroreduction. ACS Catal. 2017, 7, 6302–6310. [Google Scholar] [CrossRef]
- Sun, X.; Kang, X.; Zhu, Q.; Ma, J.; Yang, G.; Liu, Z.; Han, B. Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem. Sci. 2016, 7, 2883–2887. [Google Scholar] [CrossRef]
- Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838. [Google Scholar] [CrossRef]
- Ganesh, I. Conversion of carbon dioxide into methanol—A potential liquid fuel: Fundamental challenges and opportunities (a review). Renew. Sustain. Energy Rev. 2014, 31, 221–257. [Google Scholar] [CrossRef]
- Pérez-Fortes, M.; Schöneberger, J.C.; Boulamanti, A.; Tzimas, E. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Appl. Energy 2016, 161, 718–732. [Google Scholar] [CrossRef]
- Saeidi, S.; Aishah, N.; Amin, S.; Reza, M. Hydrogenation of CO2 to value-added products—A review and potential future developments. Biochem. Pharmacol. 2014, 5, 66–81. [Google Scholar] [CrossRef]
- Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: Catalytic chess at the interface of energy and chemistry. Angew. Chemie Int. Ed. 2016, 55, 7296–7343. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-H.; Himeda, Y.; Muckerman, J.T.; Manbeck, G.F.; Fujita, E. CO2 Hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 2015, 115, 12936–12973. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Wang, T.; Tsubaki, N. Efficient conversion of carbon dioxide to methanol using copper catalyst by a new low-temperature hydrogenation process. Chem. Lett. 2007, 36, 1182–1183. [Google Scholar] [CrossRef]
- Alper, E.; Yuksel Orhan, O. CO2 Utilization: Developments in conversion processes. Petroleum 2017, 3, 109–126. [Google Scholar] [CrossRef]
- Rahimpour, M.R. A two-stage catalyst bed concept for conversion of carbon dioxide into methanol. Fuel Process. Technol. 2008, 89, 556–566. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, Q.; Kang, X.; Liu, H.; Qian, Q.; Zhang, Z.; Han, B. Molybdenum–Bismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol. Angew. Chemie Int. Ed. 2016, 55, 6771–6775. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675. [Google Scholar] [CrossRef]
- White, J.L.; Baruch, M.F.; Pander, J.E.; Hu, Y.; Fortmeyer, I.C.; Park, J.E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; et al. Light-Driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, W.; Ji, Y.; Yi, X.; Ma, J.; Wu, H.; Jiang, M. Coupled CO2 fixation from ethylene oxide off-gas with bio-based succinic acid production by engineered recombinant Escherichia coli. Biochem. Eng. J. 2017, 117, 1–6. [Google Scholar] [CrossRef]
- Jürgensen, L.; Ehimen, E.A.; Born, J.; Holm-Nielsen, J.B. Utilization of surplus electricity from wind power for dynamic biogas upgrading: Northern Germany case study. Biomass Bioenergy 2014, 66, 126–132. [Google Scholar] [CrossRef]
- Singhal, S.; Agarwal, S.; Arora, S.; Sharma, P.; Singhal, N. Upgrading techniques for transformation of biogas to bio-CNG: A review. Int. J. Energy Res. 2017, 41, 1657–1669. [Google Scholar] [CrossRef]
- Stams, A.J.M.; Plugge, C.M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 2009, 7, 568. [Google Scholar] [CrossRef] [PubMed]
- Schuchmann, K.; Müller, V. Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 2014, 12, 809. [Google Scholar] [CrossRef] [PubMed]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Luo, G.; Angelidaki, I. Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol. Bioeng. 2012, 109, 2729–2736. [Google Scholar] [CrossRef]
- Bassani, I.; Kougias, P.G.; Treu, L.; Angelidaki, I. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Environ. Sci. Technol. 2015, 49, 12585–12593. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Angelidaki, I. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: Process performance and microbial insights. Appl. Microbiol. Biotechnol. 2013, 97, 1373–1381. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.V.; Pavlostathis, S.G.; Rozzi, A.; Sanders, W.T.; Siegrist, H.; Vavilin, V.A. The IWA anaerobic digestion model No 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef]
- Mulat, D.G.; Mosbæk, F.; Ward, A.J.; Polag, D.; Greule, M.; Keppler, F.; Nielsen, J.L.; Feilberg, A. Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. Waste Manag. 2017, 68, 146–156. [Google Scholar] [CrossRef]
- Luo, G.; Johansson, S.; Boe, K.; Xie, L.; Zhou, Q.; Angelidaki, I. Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol. Bioeng. 2012, 109, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Fasihi, M.; Bogdanov, D.; Breyer, C. Techno-Economic assessment of power-to-liquids (PtL) fuels production and global trading based on hybrid pv-wind power plants. Energy Procedia 2016, 99, 243–268. [Google Scholar] [CrossRef]
- Caldera, U. Role of seawater desalination in the management of an integrated water and 100% renewable energy based power sector in Saudi Arabia. Water 2018, 10, 3. [Google Scholar] [CrossRef]
- Fasihi, M.; Bogdanov, D.; Breyer, C. Long-Term hydrocarbon trade options for the Maghreb Region and Europe—Renewable energy based synthetic fuels for a net zero emissions world. Sustainability 2017, 9, 306. [Google Scholar] [CrossRef]
- Lövenich, A.; Fasihi, M.; Graf, A.; Kasten, P.; Langenheld, A.; Meyer, K.; Peter, F.; Podewils, C. The Future Cost of Electricity-Based Synthetic Fuels; Frontier Economics Ltd.: Cologne, Germany, 2018. [Google Scholar]
- Zhang, C.; Jun, K.-W.; Gao, R.; Kwak, G.; Park, H.-G. Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis. Fuel 2017, 190, 303–311. [Google Scholar] [CrossRef]
- Stokes, H.C. The Economics of Methanol Production; The Stokes Consulting Group: Naples, FL, USA, 2002. [Google Scholar]
- Mazière, A.; Prinsen, P.; García, A.; Luque, R.; Len, C. A review of progress in (bio)catalytic routes from/to renewable succinic acid. Biofuels Bioprod. Biorefin. 2017, 11, 908–931. [Google Scholar] [CrossRef]
- Valderrama-Gomez, M.A.; Kreitmayer, D.; Wolf, S.; Marin-Sanguino, A.; Kremling, A. Application of theoretical methods to increase succinate production in engineered strains. Bioprocess Biosyst. Eng. 2017, 40, 479–497. [Google Scholar] [CrossRef]
- Adom, F.; Dunn, J.B.; Han, J.; Sather, N. Life-Cycle fossil energy consumption and greenhouse gas emissions of bioderived chemicals and their conventional counterparts. Environ. Sci. Technol. 2014, 48, 14624–14631. [Google Scholar] [CrossRef]
- Cheng, K.-K.; Zhao, X.-B.; Zeng, J.; Zhang, J.-A. Biotechnological production of succinic acid: Current state and perspectives. Biofuels Bioprod. Biorefin. 2012, 6, 302–318. [Google Scholar] [CrossRef]
- Mohan, S.V.; Modestra, J.A.; Amulya, K.; Butti, S.K.; Velvizhi, G. A circular bioeconomy with biobased products from CO2 sequestration. Trends Biotechnol. 2016, 34, 506–519. [Google Scholar] [CrossRef]
- Cao, W.; Wang, Y.; Luo, J.; Yin, J.; Xing, J.; Wan, Y. Effectively converting carbon dioxide into succinic acid under mild pressure with Actinobacillus succinogenes by an integrated fermentation and membrane separation process. Bioresour. Technol. 2018, 266, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Cukalovic, A.; Stevens, C. V Feasibility of production methods for succinic acid derivatives: A marriage of renewable resources and chemical technology. Biofuels Bioprod. Biorefin. 2008, 2, 505–529. [Google Scholar] [CrossRef]
- Gunnarsson, I.B.; Alvarado-Morales, M.; Angelidaki, I. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and biosuccinic acid production. Environ. Sci. Technol. 2014, 48, 12464–12468. [Google Scholar] [CrossRef] [PubMed]
- Ballmann, P.; Dröge, S.; Wilkens, M. Integrated succinic acid production using lignocellulose and carbon dioxide from biogas plants. Chemie Ing. Tech. 2018, 90, 1253. [Google Scholar] [CrossRef]
- Babaei, M.; Tsapekos, P.; Alvarado-Morales, M.; Hosseini, M.; Ebrahimi, S.; Niaei, A.; Angelidaki, I. Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochem. Eng. J. 2019, 147, 136–145. [Google Scholar] [CrossRef]
- Urbance, S.E.; Pometto, A.L., III; Dispirito, A.A.; Denli, Y. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl. Microbiol. Biotechnol. 2004, 65, 664–670. [Google Scholar] [CrossRef]
- Kim, D.Y.; Yim, S.C.; Lee, P.C.; Lee, W.G.; Lee, S.Y.; Chang, H.N. Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme Microb. Technol. 2004, 35, 648–653. [Google Scholar] [CrossRef]
- Wan, C.; Li, Y.; Shahbazi, A.; Xiu, S. Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Appl. Biochem. Biotechnol. 2008, 145, 111–119. [Google Scholar] [CrossRef]
- Bradfield, M.F.A.; Mohagheghi, A.; Salvachúa, D.; Smith, H.; Black, B.A.; Dowe, N.; Beckham, G.T.; Nicol, W. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol. Biofuels 2015, 8, 181. [Google Scholar] [CrossRef]
- Song, H.; Lee, S.Y. Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 2006, 39, 352–361. [Google Scholar] [CrossRef]
- Lee, P.C.; Lee, S.Y.; Hong, S.H.; Chang, H.N. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 2002, 58, 663–668. [Google Scholar] [PubMed]
- Lee, P.C.; Lee, S.Y.; Hong, S.H.; Chang, H.N. Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess Biosyst. Eng. 2003, 26, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Jae Oh, I.; Lee, H.; Park, C.; Lee, S.Y.; Lee, J. Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechnol. 2008, 18, 908–912. [Google Scholar]
- Samuelov, N.S.; Datta, R.; Jain, M.K.; Zeikus, J.G. Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive. Appl. Environ. Microbiol. 1999, 65, 2260–2263. [Google Scholar] [PubMed]
- Lee, P.C.; Lee, W.G.; Kwon, S.; Lee, S.Y.; Chang, H.N. Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl. Microbiol. Biotechnol. 2000, 54, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.C.; Lee, S.Y.; Chang, H.N. Kinetic study of organic acid formations and growth of Anaerobiospirillum succiniciproducens during continuous cultures. J. Microbiol. Biotechnol. 2009, 19, 1379–1384. [Google Scholar] [CrossRef]
- Lee, P.C.; Lee, S.Y.; Chang, H.N. Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol. Bioprocess Biosyst. Eng. 2010, 33, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Lee, S.-Y.; Chang, H.-N. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system. J. Microbiol. Biotechnol. 2008, 18, 1252–1256. [Google Scholar]
- Tan, J.P.; Jahim, J.; Harun, S.; Wu, T.Y. Overview of the Potential of Bio-Succinic Acid Production from Oil Palm Fronds. J. Phys. Sci. 2017, 28, 53–72. [Google Scholar] [Green Version]
- Köhler, K.A.K.; Rühl, J.; Blank, L.M.; Schmid, A. Integration of biocatalyst and process engineering for sustainable and efficient n-butanol production. Eng. Life Sci. 2015, 15, 4–19. [Google Scholar] [CrossRef]
- Liebal, U.W.; Blank, L.M.; Ebert, B.E. CO2 to succinic acid—Estimating the potential of biocatalytic routes. Metab. Eng. Commun. 2018, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Figueres, C.; Le Quéré, C.; Mahindra, A.; Bäte, O.; Whiteman, G.; Peters, G.; Guan, D. Emissions are still rising: Ramp up the cuts. Nature 2018, 564, 27–30. [Google Scholar] [PubMed]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G. Global carbon budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef]
Modification | Description/Results | Reference |
---|---|---|
Ruthenium | More advanced than nickel but costly | [54] |
Electrochemical | ||
N-doped carbon | Using the standard three-electrode or H cells Faradaic efficiencies 80% to 94% | [55,56,57] |
Copper-on-carbon | ||
Copper | Electrodeposited on a carbon gas diffusion electrode 38 mA/cm2 densities of methane formation | [56] |
Modification | Description/Result | Reference |
---|---|---|
Transition metal carbides: | [65] | |
1. Molybdenum carbide (Mo2C) and cementite (Fe3C) | High CO2 conversion and good methanol selectivity | |
2. Tantalum carbide (TaC) and Silicon carbide (SiC) | Almost inactive | |
Two-stage bed system | Higher performance | [66] |
Heterogeneous copper-based catalysts | Based on CO hydrogenation | [59] |
Molybdenum-bismuth bimetallic chalcogenide electrocatalyst | Produce methanol with 70% of Faradaic efficiency with requirement of acetonitrile/ionic liquid electrolyte solution | [67] |
Reactor Type | Upgrading Technology | Substrate | Temperature (°C) | HRT (days) | H2 Flow (L/L-days) | pH | CH4 (%) | CO2 (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
1.5 (R1) and 2L (R2) CSTR | a) Mesophilic digester with external H2 addition | Cattle ma-nure | 35–55 | R1 = 25 R2 = 20 | R1 = 0.192 R2 = 0.510 | R1 = 7.78 R2 = 7.95 | 89 | 7 | [78] |
b) Thermophilic digester with external H2 addition | 85 | 9 | |||||||
120 mL Batch bottle | Exogenous H2 addition | Maize Leaf | 52 | 24 | 0.04–0.10 | 7–8 | 88–89 | 10–12 | [81] |
Two 600 mL CSTR | Co-digested substrates with exogenous H2 addition | Cattle ma-nure and whey | 55 | 15 | 1.5–1.7 | 7.7–7.9 | 53–75 | 6.6–13 | [79] |
Two 3.5 L CSTR | H2 addition | Cattle ma-nure | 55 | 14 | 28.6 mL/L/h | 8.3 | 68 | 12 | [82] |
Pressure (kPa) | ||||
---|---|---|---|---|
101.325 | 140 | |||
Gas-liquid ratio | 8.3:1 | 5:1 | 8.3:1 | 5:1 |
CO2 solubility (mM) | 9.15 | 9.15 | 16.7 | 16.7 |
CO2 fixation rate (L CO2/L-d) | 1.35 | 1.52 | 2.59 | 1.77 |
CH4 purity (%) | 76.4 | 85.2 | 91.1 | 95.4 |
SA yield (g/g) | 0.60 | 0.56 | 0.62 | 0.63 |
SA productivity (g/L-h) | 0.53 | 0.53 | 0.60 | 0.56 |
SA concentration (g/L) | 12.85 | 12.74 | 14.39 | 13.53 |
By-products concentration (g/L) | 9.5 | 11.63 | 8.65 | 9.96 |
Task | Application Properties | Results | Discussion | |
---|---|---|---|---|
SA Production | Carbon source: MgCO3 5–100 g/L; Substrate: OFHKW 17, 25, 35 & 60 g/L; Serum bottles: 250-mL; T: 37 °C; pH: 6.7 ± 0.1; ω: 150 rpm | B. succiniciproducens SA concentration: Maximum titer of 17.9 ± 0.43 g/L; Overall reaction: Substrate + 2 CO2 → 2 lactate + 2 acetate + 2 formate | Higher substrate concentration results in higher SA production; B. succiniciproducens is preferred for SA fermentation due to better performances at lower concentration, whereas the by-products were lower | |
A. succinogenes SA concentration: Maximum titer of 21.1 ± 3.5 g/L | ||||
Simultaneous Upgrading | B. succiniciproducens | Carbon source: Biogas; Substrate: OFHKW 17 g/L; Reactors: 3-L; T: 37 °C; pH: 6.7; ω: 200rpm; t: 8 h; P: 130 & 140 kPa | SA concentration: 3.8 ± 0.8 g/L (0.25 gSA/gglucose); CO2 content: 8.0% (v/v) reduction; CH4 content: 4.7% (v/v) increase | In term of duration and sugar consumption rate, B. succiniciproducens (8 h) is still superior than A. succinogenes (24 h); The best way to conduct fermentation process was by gradual additional of substrate instead of starting with high substrate concentration |
A. succinogenes | Carbon source: Biogas; Substrate: Glucose 32 g/L; Reactors: 3-L; T: 37 °C; pH: 6.75; ω: 200 rpm; t: 24 h; P: 101.325 & 140 kPa | SA concentration: 14.39 g/L; CH4 content: 31% (v/v) increase |
Microorganism | Reactor Type/ Fermentation Technique | Substrate | Titer (g/L) | Yield (g/g) | Reference |
---|---|---|---|---|---|
A. succinogenes | Repeat-batch | Glucose | 33.9 | 0.86 | [99] |
A. succinogenes 130Z | Suspended cell | Glucose | 10.4 | 0.27–0.73 | [99] |
A. succinogenes 130Z | Recycled cell | Glucose | 18.6 | 0.50–0.59 | [100] |
A. succinogenes 130Z | Batch | Whey | 21.5 | 0.57 | [101] |
A. succinogenes 130Z | Continuous | Corn | 39.6 | 0.78 | [102] |
A. succinogenes FZ53 | Batch | Glucose | 105.8 | 0.8 | [103] |
M. succiniciproducens | Batch | Glucose | 14 | 0.7 | [104] |
M. succiniciproducens | Batch | Whey | 13.5 | 0.72 | [105] |
M. succiniciproducens MBEL55E | Suspended cell | Lactose | 10.3 | 0.63–0.69 | [105] |
M. succiniciproducens MBEL55E | Suspended cell | Glucose | 14.1 | 0.34–0.61 | [100] |
Xylose | |||||
M. succiniciproducens MBEL55E | Recycled cell | Glucose | 12.8 | 0.48–0.64 | [100] |
M. succiniciproducens LPK7 | Recycled cell | Glucose | 12.9 | 0.10–0.71 | [106] |
A. succiniciproducens | Continuous | Whey | 24 | 0.72 | [103] |
A. succiniciproducens ATCC No. 29305 | Suspended cell | Lactose | 24.0 | 0.62–0.72 | [107] |
A. succiniciproducens ATCC No. 29305 | Suspended cell | Lactose | 14.0 | 0.81–0.94 | [108] |
A. succiniciproducens ATCC No. 29305 | Suspended cell | Glucose | 29.6 | 0.73–0.82 | [109] |
A. succiniciproducens ATCC No. 29305 | Suspended cell | Glycerol | 16.1 | 1.23–1.50 | [110] |
A. succiniciproducens ATCC No. 53488 | Recycled cell | Glucose | 16.5 | 0.74–0.83 | [111] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, A.I.; Ong, M.Y.; Nomanbhay, S.; Chew, K.W.; Show, P.L. Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering 2019, 6, 92. https://doi.org/10.3390/bioengineering6040092
Adnan AI, Ong MY, Nomanbhay S, Chew KW, Show PL. Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering. 2019; 6(4):92. https://doi.org/10.3390/bioengineering6040092
Chicago/Turabian StyleAdnan, Amir Izzuddin, Mei Yin Ong, Saifuddin Nomanbhay, Kit Wayne Chew, and Pau Loke Show. 2019. "Technologies for Biogas Upgrading to Biomethane: A Review" Bioengineering 6, no. 4: 92. https://doi.org/10.3390/bioengineering6040092
APA StyleAdnan, A. I., Ong, M. Y., Nomanbhay, S., Chew, K. W., & Show, P. L. (2019). Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering, 6(4), 92. https://doi.org/10.3390/bioengineering6040092