Understanding Acquired Brain Injury: A Review
Abstract
:1. Introduction
2. Acquired Brain Injury and Its Types
2.1. Traumatic Brain Injuries (TBIs)
2.1.1. Concussion
2.1.2. Skull Fractures
2.1.3. Epidural or Subdural Hematomas and Subarachnoid Hemorrhage
2.1.4. Penetrating Brain Injury
2.2. Non-Traumatic Brain Injuries (Non-TBI)
2.2.1. Infections
2.2.2. Anoxia
2.2.3. Stroke
2.2.4. Alcohol and Drug Use
2.2.5. Neoplasm
3. Mechanism of ABI
3.1. Biophysical Mechanism of ABI
3.2. Injury to the Tissues
3.2.1. Primary and Secondary Injuries
3.2.2. Prenatal and Birth Damage
3.2.3. Post-natal Injury
3.2.4. Injuries in Adulthood
3.3. Physiological Mechanisms of ABI
3.3.1. Excitotoxicity
3.3.2. Oxidative Stress
3.3.3. Acidosis
3.3.4. Inflammation
3.3.5. Tauopathies
4. Injury and Outcome
4.1. Physical Outcomes
4.2. Cognitive Outcomes
4.3. Educational Outcomes
4.4. Emotional and Behavioral Outcomes
5. Pre-Existing Medications
6. Plausible Drug Therapies
6.1. S100B
6.2. Statins
6.3. Role of Phytochemicals in Brain Injury
6.4. Magnesium
6.5. Barbiturates
6.6. Glutamate Receptor Antagonist
6.7. Antioxidants
6.8. Targeting Inflammation
6.9. Programmed Cell Death Inhibitors
7. Future Prospective
7.1. ICP Monitoring and Management
7.2. Medically Induced Coma
7.3. Surgical Intervention
7.4. Remote Ischemic Conditioning as an Adjuvant Therapy
7.5. Elastin Derived Peptides in Acquired Brain Injury
7.6. Stem Cell—Contemporary Clinical Trial
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bruns, J., Jr.; Hauser, W.A. The Epidemiology of Traumatic Brain Injury: A Review. Epilepsia 2003, 44, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 2017, 66, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, B.D.; Burnett, D.M.; Miller, M.A. Congenital and acquired brain injury. 1. Brain injury: Epidemiology and pathophysiology. Arch. Phys. Med. Rehabil. 2003, 84, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Kisser, J.; Waldstein, S.R.; Evans, M.K.; Zonderman, A.B. Lifetime prevalence of traumatic brain injury in a demographically diverse community sample. Brain Inj. 2017, 31, 620–623. [Google Scholar] [CrossRef]
- Eom, K.S. Epidemiology and Outcomes of Traumatic Brain Injury in Elderly Population: A Multicenter Analysis Using Korean Neuro-Trauma Data Bank System 2010–2014. J. Korean Neurosurg. Soc. 2019, 62, 243–255. [Google Scholar] [CrossRef]
- McGinn, M.J.; Povlishock, J.T. Pathophysiology of Traumatic Brain Injury. Neurosurg. Clin. 2016, 27, 397–407. [Google Scholar] [CrossRef]
- Giustini, A.; Pistarini, C.; Pisoni, C. Chapter 34—Traumatic and nontraumatic brain injury. In Handbook of Clinical Neurology; Barnes, M.P., Good, D.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 110, pp. 401–409. [Google Scholar]
- Bramlett, H.M.; Dietrich, W.D. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. J. Neurotrauma 2015, 32, 1834–1848. [Google Scholar] [CrossRef]
- Peterson, A.B.; Xu, L.; Daugherty, J.; Breiding, M.J. Surveillance Report of Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths, United States, 2014; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019; pp. 1–24. Available online: https://stacks.cdc.gov/view/cdc/78062 (accessed on 14 June 2022).
- Destounis, A.; Tountas, C.; Theodosis-Georgilas, A.; Zahos, P.; Kasinos, N.; Palios, J.; Beldekos, D. An unusual case of double-chambered left ventricle: A case of double-chambered left ventricle communicated with right ventricle through a ventricular septal defect presented during only in diastole and a concomitant mitral valve prolapse. J. Echocardiogr. 2019, 17, 167–168. [Google Scholar] [CrossRef]
- Sheu, M.J.; Liang, F.W.; Lu, T.H. Hepatitis C virus infection mortality trends according to three definitions with special concern for the baby boomer birth cohort. J. Viral. Hepat. 2021, 28, 317–325. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef]
- Cancelliere, C.; Coronado, V.G.; Taylor, C.A.; Xu, L. Epidemiology of Isolated Versus Nonisolated Mild Traumatic Brain Injury Treated in Emergency Departments in the United States, 2006–2012: Sociodemographic Characteristics. J. Head Trauma Rehabil. 2017, 32, E37–E46. [Google Scholar] [CrossRef] [PubMed]
- Van den Brand, C.L.; Karger, L.B.; Nijman, S.T.M.; Hunink, M.G.M.; Patka, P.; Jellema, K. Traumatic brain injury in the Netherlands, trends in emergency department visits, hospitalization and mortality between 1998 and 2012. Eur. J. Emerg. Med. 2018, 25, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Giner, J.; Mesa Galán, L.; Yus Teruel, S.; Guallar Espallargas, M.C.; Pérez López, C.; Isla Guerrero, A.; Roda Frade, J. Traumatic brain injury in the new millennium: New population and new management. Neurologia 2022, 37, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Fraser, F.; Matsuzawa, Y.; Lee, Y.S.C.; Minen, M. Behavioral Treatments for Post-Traumatic Headache. Curr. Pain Headache Rep. 2017, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Jarrahi, A.; Braun, M.; Ahluwalia, M.; Gupta, R.V.; Wilson, M.; Munie, S.; Ahluwalia, P.; Vender, J.R.; Vale, F.L.; Dhandapani, K.M.; et al. Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020, 8, 389. [Google Scholar] [CrossRef] [PubMed]
- Barkhoudarian, G.; Hovda, D.A.; Giza, C.C. The Molecular Pathophysiology of Concussive Brain Injury—An Update. Phys. Med. Rehabil. Clin. 2016, 27, 373–393. [Google Scholar] [CrossRef]
- Gordon, K.E.; Dooley, J.M.; Wood, E.P. Descriptive Epidemiology of Concussion. Pediatric. Neurol. 2006, 34, 376–378. [Google Scholar] [CrossRef]
- Veliz, P.; McCabe, S.E.; Eckner, J.T.; Schulenberg, J.E. Prevalence of Concussion among US Adolescents and Correlated Factors. JAMA 2017, 318, 1180–1182. [Google Scholar] [CrossRef]
- Tenny, S.; Thorell, W. Intracranial Hemorrhage. In StatPearls; StatPearls Publishing Copyright © 2020; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2020. [Google Scholar]
- Shen, Q.; Hiebert, J.B.; Hartwell, J.; Thimmesch, A.R.; Pierce, J.D. Systematic Review of Traumatic Brain Injury and the Impact of Antioxidant Therapy on Clinical Outcomes. Worldviews Evid. Based Nurs. 2016, 13, 380–389. [Google Scholar] [CrossRef]
- Wilkes, S.; McCormack, E.; Kenney, K.; Stephens, B.; Passo, R.; Harburg, L.; Silverman, E.; Moore, C.; Bogoslovsky, T.; Pham, D.; et al. Evolution of Traumatic Parenchymal Intracranial Hematomas (ICHs): Comparison of Hematoma and Edema Components. Front. Neurol. 2018, 9, 527. [Google Scholar] [CrossRef]
- Encarnacion-Ramirez, M.J.; Aquino, A.A.; Castillo, R.E.B.; Melo-Guzmán, G.; López-Vujnovic, D.; Blas, A.; Acosta-Garcés, R.; Bernés-Rodríguez, M.; Guerra, R.M.; Ayala-Arcipreste, A.; et al. Surgical management of a penetrating drill bit injury to the skull base. Surg. Neurol. Int. 2022, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Raymont, V.; Salazar, A.M.; Lipsky, R.; Goldman, D.; Tasick, G.; Grafman, J. Correlates of posttraumatic epilepsy 35 years following combat brain injury. Neurology 2010, 75, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.M.; Wang, A.; Hafler, D.A. Basic principles of neuroimmunology. Semin Immunopathol. 2022, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Todorovski, T.; Mendonça, D.A.; Fernandes-Siqueira, L.O.; Cruz-Oliveira, C.; Guida, G.; Valle, J.; Cavaco, M.; Limas, F.I.V.; Neves, V.; Cadima-Couto, Í.; et al. Targeting Zika Virus with New Brain- and Placenta-Crossing Peptide-Porphyrin Conjugates. Pharmaceutics 2022, 14, 738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Gan, J.; Luo, R.; Chen, X. The first case of Streptococcus intermedius brain abscess with hemophagocytic histiocytosis. BMC Infect. Dis. 2022, 22, 627. [Google Scholar] [CrossRef]
- Antonello, R.M.; Riccardi, N. How we deal with Staphylococcus aureus (MSSA, MRSA) central nervous system infections. Front. Biosci. Sch. 2022, 14, 1. [Google Scholar] [CrossRef]
- Mohammed, I.; Iliyasu, G.; Habib, A.G. Emergence and control of epidemic meningococcal meningitis in sub-Saharan Africa. Pathog. Glob. Health 2017, 111, 1–6. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, S.; Wang, S.; Zheng, Y.; Wang, S.; Chen, H.; Pang, J.; Ma, J.; Yang, X.; Chen, Y. Global magnitude of encephalitis burden and its evolving pattern over the past 30 years. J. Infect. 2022, 84, 777–787. [Google Scholar] [CrossRef]
- Lacerte, M.; Hays Shapshak, A.; Mesfin, F.B. Hypoxic Brain Injury. In StatPearls; StatPearls Publishing Copyright © 2020; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2020. [Google Scholar]
- Wen, X.; Li, Y.; He, X.; Xu, Y.; Shu, Z.; Hu, X.; Chen, J.; Jiang, H.; Gong, X. Prediction of Malignant Acute Middle Cerebral Artery Infarction via Computed Tomography Radiomics. Front. Neurosci. 2020, 14, 708. [Google Scholar] [CrossRef]
- Simard, J.M.; Sahuquillo, J.; Sheth, K.N.; Kahle, K.T.; Walcott, B.P. Managing malignant cerebral infarction. Curr. Treat. Options Neurol. 2011, 13, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Writing Group, M.; Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Despres, J.P.; et al. Heart Disease and Stroke Statistics—2016 Update: A Report From the American Heart Association. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef]
- Ovbiagele, B.; Nguyen-Huynh, M.N. Stroke epidemiology: Advancing our understanding of disease mechanism and therapy. Neurotherapeutics 2011, 8, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, M.; Kumar, M.; Ahluwalia, P.; Rahimi, S.; Vender, J.R.; Raju, R.P.; Hess, D.C.; Baban, B.; Vale, F.L.; Dhandapani, K.M.; et al. Rescuing mitochondria in traumatic brain injury and intracerebral hemorrhages—A potential therapeutic approach. Neurochem. Int. 2021, 150, 105192. [Google Scholar] [CrossRef]
- Flores-Medina, Y.; Rodríguez-Agudelo, Y.; Bernal-Hernández, J.; Cruz-Fuentes, C.S. Cognitive impairment in the co-occurrence of alcohol dependence and major depression: Neuropsychological assessment and event-related potentials analyses. Heliyon 2022, 8, e09899. [Google Scholar] [CrossRef] [PubMed]
- Lauvsnes, A.D.F.; Gråwe, R.W.; Langaas, M. Predicting Relapse in Substance Use: Prospective Modeling Based on Intensive Longitudinal Data on Mental Health, Cognition, and Craving. Brain Sci. 2022, 12, 957. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Mukherjee, P. Targeting energy metabolism in brain cancer: Review and hypothesis. Nutr. Metab. 2005, 2, 30. [Google Scholar] [CrossRef]
- Hoffman, S.; Propp, J.M.; McCarthy, B.J. Temporal trends in incidence of primary brain tumors in the United States, 1985–1999. Neuro Oncol. 2006, 8, 27–37. [Google Scholar] [CrossRef]
- Asgharian, B.; Chen, Y.J.; Patronas, N.J.; Peghini, P.L.; Reynolds, J.C.; Vortmeyer, A.; Zhuang, Z.; Venzon, D.J.; Gibril, F.; Jensen, R.T. Meningiomas may be a component tumor of multiple endocrine neoplasia type 1. Clin. Cancer Res. 2004, 10, 869–880. [Google Scholar] [CrossRef]
- Chamoun, R.; Krisht, K.M.; Couldwell, W.T. Incidental meningiomas. Neurosurg. Focus 2011, 31, E19. [Google Scholar] [CrossRef]
- Watts, J.; Box, G.; Galvin, A.; Brotchie, P.; Trost, N.; Sutherland, T. Magnetic resonance imaging of meningiomas: A pictorial review. Insights Imaging 2014, 5, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Rogers, L.; Barani, I.; Chamberlain, M.; Kaley, T.J.; McDermott, M.; Raizer, J.; Schiff, D.; Weber, D.C.; Wen, P.Y.; Vogelbaum, M.A. Meningiomas: Knowledge base, treatment outcomes, and uncertainties. A RANO review. J. Neurosurg. 2015, 122, 4–23. [Google Scholar] [CrossRef]
- Cloots, R.J.; Gervaise, H.M.; van Dommelen, J.A.; Geers, M.G. Biomechanics of traumatic brain injury: Influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 2008, 36, 1203–1215. [Google Scholar] [CrossRef]
- Gaetz, M. The neurophysiology of brain injury. Clin. Neurophysiol. 2004, 115, 4–18. [Google Scholar] [CrossRef]
- Cloots, R.J.; van Dommelen, J.A.; Kleiven, S.; Geers, M.G. Multi-scale mechanics of traumatic brain injury: Predicting axonal strains from head loads. Biomech Model. Mechanobiol. 2013, 12, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Greve, M.W.; Zink, B.J. Pathophysiology of traumatic brain injury. Mt. Sinai J. Med. 2009, 76, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T.; Workshop Scientific, T.; Advisory Panel, M. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar] [CrossRef]
- Stein, S.C.; Georgoff, P.; Meghan, S.; Mizra, K.; Sonnad, S.S. 150 years of treating severe traumatic brain injury: A systematic review of progress in mortality. J. Neurotrauma 2010, 27, 1343–1353. [Google Scholar] [CrossRef]
- Reilly, P.; Bullock, R. Head Injury: Pathophysiology and Management of Severe Closed Injury; Chapman & Hall Medical: London, UK; New York, NY, USA, 1997; p. 478. [Google Scholar]
- Meythaler, J.M.; Peduzzi, J.D.; Eleftheriou, E.; Novack, T.A. Current concepts: Diffuse axonal injury-associated traumatic brain injury. Arch. Phys. Med. Rehabil. 2001, 82, 1461–1471. [Google Scholar] [CrossRef]
- Ommaya, A.K.; Gennarelli, T.A. Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 1974, 97, 633–654. [Google Scholar] [CrossRef]
- Smith, D.H.; Meaney, D.F.; Shull, W.H. Diffuse axonal injury in head trauma. J. Head Trauma Rehabil. 2003, 18, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Poirier, M.P. Concussions: Assessment, management, and recommendations for return to activity. Clin. Pediatric Emerg. Medicine 2003, 4, 179–185. [Google Scholar] [CrossRef]
- Bayly, P.V.; Cohen, T.S.; Leister, E.P.; Ajo, D.; Leuthardt, E.C.; Genin, G.M. Deformation of the human brain induced by mild acceleration. J. Neurotrauma 2005, 22, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Abney, T.M.; Okamoto, R.J.; Pless, R.B.; Genin, G.M.; Bayly, P.V. Relative brain displacement and deformation during constrained mild frontal head impact. J. R Soc. Interface 2010, 7, 1677–1688. [Google Scholar] [CrossRef]
- Fakharian, E.; Abedzadeh-Kalahroudi, M.; Atoof, F. Effect of Tranexamic Acid on Prevention of Hemorrhagic Mass Growth in Patients with Traumatic Brain Injury. World Neurosurg. 2018, 109, e748–e753. [Google Scholar] [CrossRef] [PubMed]
- Hawryluk, G.W.; Manley, G.T. Classification of traumatic brain injury: Past, present, and future. Handb. Clin. Neurol. 2015, 127, 15–21. [Google Scholar]
- Mira, R.G.; Lira, M.; Cerpa, W. Traumatic Brain Injury: Mechanisms of Glial Response. Front. Physiol. 2021, 12, 740939. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H.; Seo, Y.S. Diffusion tensor tractography characteristics of axonal injury in concussion/mild traumatic brain injury. Neural Regen Res. 2022, 17, 978–982. [Google Scholar] [CrossRef]
- Su, E.; Bell, M. Frontiers in Neuroscience Diffuse Axonal Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; CRC Press/Taylor and Francis Group © 2016; Taylor & Francis Group, LLC.: Boca Raton, FL, USA, 2016. [Google Scholar]
- Joyce, T.; Gossman, W.; Huecker, M.R. Pediatric Abusive Head Trauma. In StatPearls; StatPearls Publishing Copyright © 2022; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Abdi, H.; Hassani, K.; Shojaei, S. An investigation of cerebral bridging veins rupture due to head trauma. Comput Methods Biomech Biomed. Engin. 2022, 1–10. [Google Scholar] [CrossRef]
- Hung, K.L. Pediatric abusive head trauma. Biomed. J. 2020, 43, 240–250. [Google Scholar] [CrossRef]
- Wright, J.N.; Feyma, T.J.; Ishak, G.E.; Abeshaus, S.; Metz, J.B.; Brown, E.C.B.; Friedman, S.D.; Browd, S.R.; Feldman, K.W. Subdural hemorrhage rebleeding in abused children: Frequency, associations and clinical presentation. Pediatr. Radiol. 2019, 49, 1762–1772. [Google Scholar] [CrossRef]
- Vaslow, D.F. Chronic subdural hemorrhage predisposes to development of cerebral venous thrombosis and associated retinal hemorrhages and subdural rebleeds in infants. Neuroradiol. J. 2022, 35, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Golub, V.M.; Reddy, D.S. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol. Rev. 2022, 74, 387–438. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.; Lara-Valderrábano, L.; Manninen, E.; Ciszek, R.; Tapiala, J.; Ndode-Ekane, X.E.; Pitkänen, A. Seizure Susceptibility and Sleep Disturbance as Biomarkers of Epileptogenesis after Experimental TBI. Biomedicines 2022, 10, 1138. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Chuang, C.C.; Chen, C.C.; Tu, P.H.; Wang, Y.C.; Yeap, M.C.; Chen, C.T.; Chang, T.W.; Liu, Z.H. The Role of Intraventricular Hemorrhage in Traumatic Brain Injury: A Novel Scoring System. J. Clin. Med. 2022, 11, 2127. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Sun, J.; Guo, Y.; Zeng, P.; Jin, K.; Huang, C.; Xu, J.; Hou, L.; Li, C.; Feng, J. Radiomics Features on Computed Tomography Combined with Clinical-Radiological Factors Predicting Progressive Hemorrhage of Cerebral Contusion. Front. Neurol. 2022, 13, 839784. [Google Scholar] [CrossRef] [PubMed]
- Svedung Wettervik, T.; Hånell, A.; Howells, T.; Ronne Engström, E.; Lewén, A.; Enblad, P. ICP, CPP, and PRx in traumatic brain injury and aneurysmal subarachnoid hemorrhage: Association of insult intensity and duration with clinical outcome. J. Neurosurg. 2022, 1, 1–8. [Google Scholar] [CrossRef]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal pathology in traumatic brain injury. Exp. Neurol. 2013, 246, 35–43. [Google Scholar] [CrossRef]
- Max, J.E. Effect of side of lesion on neuropsychological performance in childhood stroke. J. Int. Neuropsychol. Soc. 2004, 10, 698–708. [Google Scholar] [CrossRef]
- Muthukumar, S.; Mehrotra, K.; Fouda, M.; Hamimi, S.; Jantzie, L.L.; Robinson, S. Prenatal and postnatal insults differentially contribute to executive function and cognition: Utilizing touchscreen technology for perinatal brain injury research. Exp. Neurol. 2022, 354, 114104. [Google Scholar] [CrossRef] [PubMed]
- Kolb, B. Sensitive Periods for Recovery from Early Brain Injury. Curr. Top. Behav. Neurosci. 2022, 53, 189–212. [Google Scholar] [CrossRef]
- Zhao, Q.; Dai, W.; Chen, H.Y.; Jacobs, R.E.; Zlokovic, B.V.; Lund, B.T.; Montagne, A.; Bonnin, A. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc. Natl. Acad. Sci. USA 2022, 119, e2113310119. [Google Scholar] [CrossRef]
- Wooldridge, A.L.; Hula, N.; Kirschenman, R.; Spaans, F.; Cooke, C.M.; Davidge, S.T. Intergenerational effects of prenatal hypoxia exposure on uterine artery adaptations to pregnancies in the female offspring. J. Dev. Orig. Health Dis. 2022, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Brandon, A.; Cui, X.; Luan, W.; Ali, A.A.; Pertile, R.A.N.; Alexander, S.A.; Eyles, D.W. Prenatal hypoxia alters the early ontogeny of dopamine neurons. Transl. Psychiatry 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Rebizant, B.; Koleśnik, A.; Grzyb, A.; Chaberek, K.; Sękowska, A.; Witwicki, J.; Szymkiewicz-Dangel, J.; Dębska, M. Fetal Cardiac Interventions-Are They Safe for the Mothers? J. Clin. Med. 2021, 10, 851. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.L.; Alemdar, B.; van Beekhuizen, H.J.; Bertholdt, C.; Braun, T.; Calda, P.; Delorme, P.; Duvekot, J.J.; Gronbeck, L.; Kayem, G.; et al. Evidence-based guidelines for the management of abnormally invasive placenta: Recommendations from the International Society for Abnormally Invasive Placenta. Am. J. Obstet. Gynecol. 2019, 220, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Rovet, J.F.; Ehrlich, R.M.; Hoppe, M. Specific intellectual deficits in children with early onset diabetes mellitus. Child. Dev. 1988, 59, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Dietz, R.M.; Dingman, A.L.; Herson, P.S. Cerebral ischemia in the developing brain. J. Cereb. Blood Flow Metab. 2022, 271678x221111600. [Google Scholar] [CrossRef]
- Semple, B.D.; Blomgren, K.; Gimlin, K.; Ferriero, D.M.; Noble-Haeusslein, L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013, 106–107, 1–16. [Google Scholar] [CrossRef]
- Sunwoo, J.; Zavriyev, A.I.; Kaya, K.; Martin, A.; Munster, C.; Steele, T.; Cuddyer, D.; Sheldon, Y.; Orihuela-Espina, F.; Herzberg, E.M.; et al. Diffuse correlation spectroscopy blood flow monitoring for intraventricular hemorrhage vulnerability in extremely low gestational age newborns. Sci. Rep. 2022, 12, 12798. [Google Scholar] [CrossRef]
- Lindsay, H.B.; Massimino, M.; Avula, S.; Stivaros, S.; Grundy, R.; Metrock, K.; Bhatia, A.; Fernández-Teijeiro, A.; Chiapparini, L.; Bennett, J.; et al. Response assessment in paediatric intracranial ependymoma: Recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol. 2022, 23, e393–e401. [Google Scholar] [CrossRef]
- de Rooij, S.R. Are Brain and Cognitive Reserve Shaped by Early Life Circumstances? Front. Neurosci. 2022, 16, 825811. [Google Scholar] [CrossRef] [PubMed]
- Gadgil, N.; McClugage, S.G.; Aldave, G.; Bauer, D.F.; Weiner, H.L.; Huisman, T.; Sanz-Cortes, M.; Belfort, M.A.; Emrick, L.; Clark, G.; et al. Natural history of posterior fetal cephaloceles and incidence of progressive cephalocele herniation. J. Neurosurg Pediatr 2022, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. TBI Data. Available online: https://www.cdc.gov/traumaticbraininjury/data/index.html (accessed on 7 July 2022).
- Centers for Disease Control and Prevention. National Center for Health Statistics: Mortality Data on CDC WONDER. Available online: https://wonder.cdc.gov/mcd.html (accessed on 7 July 2022).
- Gururaj, G. Epidemiology of traumatic brain injuries: Indian scenario. Neurol. Res. 2002, 24, 24–28. [Google Scholar] [CrossRef]
- Karthigeyan, M.; Gupta, S.K.; Salunke, P.; Dhandapani, S.; Wankhede, L.S.; Kumar, A.; Singh, A.; Sahoo, S.K.; Tripathi, M.; Gendle, C.; et al. Head injury care in a low- and middle-income country tertiary trauma center: Epidemiology, systemic lacunae, and possible leads. Acta Neurochir. 2021, 163, 2919–2930. [Google Scholar] [CrossRef]
- Hwang, H.F.; Cheng, C.H.; Chien, D.K.; Yu, W.Y.; Lin, M.R. Risk Factors for Traumatic Brain Injuries during Falls in Older Persons. J. Head Trauma Rehabil. 2015, 30, E9–E17. [Google Scholar] [CrossRef] [PubMed]
- Greene, N.H.; Kernic, M.A.; Vavilala, M.S.; Rivara, F.P. Variation in Adult Traumatic Brain Injury Outcomes in the United States. J. Head Trauma Rehabil. 2018, 33, E1–E8. [Google Scholar] [CrossRef]
- Harvey, L.A.; Close, J.C. Traumatic brain injury in older adults: Characteristics, causes and consequences. Injury 2012, 43, 1821–1826. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Li, D.; Jia, Y.; Zhang, W.; Chen, B.; Wan, Z. Exercise intervention for the risk of falls in older adults: A protocol for systematic review and meta-analysis. Medicine 2021, 100, e24548. [Google Scholar] [CrossRef]
- Schneider, N.; Dagan, M.; Katz, R.; Thumm, P.C.; Brozgol, M.; Giladi, N.; Manor, B.; Mirelman, A.; Hausdorff, J.M. Combining transcranial direct current stimulation with a motor-cognitive task: The impact on dual-task walking costs in older adults. J. Neuroeng. Rehabil. 2021, 18, 23. [Google Scholar] [CrossRef]
- Arundine, M.; Tymianski, M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol. Life Sci. 2004, 61, 657–668. [Google Scholar] [CrossRef]
- López-Valdés, H.E.; Clarkson, A.N.; Ao, Y.; Charles, A.C.; Carmichael, S.T.; Sofroniew, M.V.; Brennan, K.C. Memantine enhances recovery from stroke. Stroke 2014, 45, 2093–2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Zhou, D.; Zheng, K.; Bi, W.; Dong, Y. Extracellular Adenosine Triphosphate Binding to P2Y1 Receptors Prevents Glutamate-Induced Excitotoxicity: Involvement of Erk1/2 Signaling Pathway to Suppress Autophagy. Front. Neurosci. 2022, 16, 901688. [Google Scholar] [CrossRef] [PubMed]
- Quillinan, N.; Herson, P.S.; Traystman, R.J. Neuropathophysiology of Brain Injury. Anesthesiol. Clin. 2016, 34, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhao, S.; Lu, W.; Guan, S.; Zhu, Y.; Wang, J.H. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity. PLoS ONE 2015, 10, e0140324. [Google Scholar] [CrossRef] [PubMed]
- Hrelia, P.; Sita, G.; Ziche, M.; Ristori, E.; Marino, A.; Cordaro, M.; Molteni, R.; Spero, V.; Malaguti, M.; Morroni, F.; et al. Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. Oxid Med. Cell Longev. 2020, 2020, 8363245. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, X.; Liu, X.; Wang, L.; Ha, J.; Gao, Z.; He, X.; Wu, Z.; Chen, A.; Jewell, L.L.; et al. Treatment of Cerebral Ischemia Through NMDA Receptors: Metabotropic Signaling and Future Directions. Front. Pharmacol. 2022, 13, 831181. [Google Scholar] [CrossRef]
- Kuns, B.; Rosani, A.; Varghese, D. Memantine. In StatPearls; StatPearls Publishing Copyright © 2022; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Shimia, M.; Iranmehr, A.; Valizadeh, A.; Mirzaei, F.; Namvar, M.; Rafiei, E.; Rahimi, A.; Khadivi, A.; Aeinfar, K. A placebo-controlled randomized clinical trial of amantadine hydrochloride for evaluating the functional improvement of patients following severe acute traumatic brain injury. J. Neurosurg. Sci. 2021. [Google Scholar] [CrossRef]
- Ghate, P.S.; Bhanage, A.; Sarkar, H.; Katkar, A. Efficacy of Amantadine in Improving Cognitive Dysfunction in Adults with Severe Traumatic Brain Injury in Indian Population: A Pilot Study. Asian J. Neurosurg. 2018, 13, 647–650. [Google Scholar] [CrossRef]
- Shafiee, S.; Ehteshami, S.; Moosazadeh, M.; Aghapour, S.; Haddadi, K. Placebo-controlled trial of oral amantadine and zolpidem efficacy on the outcome of patients with acute severe traumatic brain injury and diffuse axonal injury. Casp. J. Intern. Med. 2022, 13, 113–121. [Google Scholar] [CrossRef]
- Marmol, S.; Feldman, M.; Singer, C.; Margolesky, J. Amantadine Revisited: A Contender for Initial Treatment in Parkinson’s Disease? CNS Drugs 2021, 35, 1141–1152. [Google Scholar] [CrossRef]
- Juarez, T.M.; Piccioni, D.; Rose, L.; Nguyen, A.; Brown, B.; Kesari, S. Phase I dose-escalation, safety, and CNS pharmacokinetic study of dexanabinol in patients with brain cancer. Neurooncol. Adv. 2021, 3, vdab006. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.; Murray, G.; Henney, H.r.; Kassem, N.; Legrand, V.; Mangelus, M.; Muizelaar, J.P.; Stocchetti, N.; Knoller, N. Efficacy and safety of dexanabinol in severe traumatic brain injury: Results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol. 2006, 5, 38–45. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Shuaib, A. Neuroprotective effects of free radical scavengers in stroke. Drugs Aging. 2007, 24, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Tanaka, E.; Murai, Y.; Tancharoen, S. Clinical trials in acute ischemic stroke. CNS Drugs 2014, 28, 929–938. [Google Scholar] [CrossRef]
- Tsubokawa, T.; Jadhav, V.; Solaroglu, I.; Shiokawa, Y.; Konishi, Y.; Zhang, J.H. Lecithinized Superoxide Dismutase Improves Outcomes and Attenuates Focal Cerebral Ischemic Injury via Antiapoptotic Mechanisms in Rats. Stroke 2007, 38, 1057–1062. [Google Scholar] [CrossRef]
- Toda, T.; Yamamoto, S.; Yonezawa, R.; Mori, Y.; Shimizu, S. Inhibitory effects of Tyrphostin AG-related compounds on oxidative stress-sensitive transient receptor potential channel activation. Eur. J. Pharmacol. 2016, 786, 19–28. [Google Scholar] [CrossRef]
- Kozai, D.; Ogawa, N.; Mori, Y. Redox regulation of transient receptor potential channels. Antioxid. Redox Signal. 2014, 21, 971–986. [Google Scholar] [CrossRef]
- Diener, H.C.; Lees, K.R.; Lyden, P.; Grotta, J.; Davalos, A.; Davis, S.M.; Shuaib, A.; Ashwood, T.; Wasiewski, W.; Alderfer, V.; et al. NXY-059 for the treatment of acute stroke: Pooled analysis of the SAINT I and II Trials. Stroke 2008, 39, 1751–1758. [Google Scholar] [CrossRef]
- Jin, W.N.; Shi, S.X.; Li, Z.; Li, M.; Wood, K.; Gonzales, R.J.; Liu, Q. Depletion of microglia exacerbates postischemic inflammation and brain injury. J. Cereb. Blood Flow. Metab. 2017, 37, 2224–2236. [Google Scholar] [CrossRef]
- Corps, K.N.; Roth, T.L.; McGavern, D.B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015, 72, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramlackhansingh, A.F.; Brooks, D.J.; Greenwood, R.J.; Bose, S.K.; Turkheimer, F.E.; Kinnunen, K.M.; Gentleman, S.; Heckemann, R.A.; Gunanayagam, K.; Gelosa, G.; et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann. Neurol. 2011, 70, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Tobin, M.K.; Bonds, J.A.; Minshall, R.D.; Pelligrino, D.A.; Testai, F.D.; Lazarov, O. Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here. J. Cereb. Blood Flow. Metab. 2014, 34, 1573–1584. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Saavedra, J.M. Angiotensin II AT(1) receptor blockers as treatments for inflammatory brain disorders. Clin. Sci. 2012, 123, 567–590. [Google Scholar] [CrossRef]
- Villapol, S. Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell Mol. Neurobiol. 2018, 38, 121–132. [Google Scholar] [CrossRef]
- Bukur, M.; Lustenberger, T.; Cotton, B.; Arbabi, S.; Talving, P.; Salim, A.; Ley, E.J.; Inaba, K. Beta-blocker exposure in the absence of significant head injuries is associated with reduced mortality in critically ill patients. Am. J. Surg. 2012, 204, 697–703. [Google Scholar] [CrossRef]
- Augustinack, J.C.; Schneider, A.; Mandelkow, E.M.; Hyman, B.T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathol. 2002, 103, 26–35. [Google Scholar] [CrossRef]
- Zemlan, F.P.; Jauch, E.C.; Mulchahey, J.J.; Gabbita, S.P.; Rosenberg, W.S.; Speciale, S.G.; Zuccarello, M. C-tau biomarker of neuronal damage in severe brain injured patients: Association with elevated intracranial pressure and clinical outcome. Brain Res. 2002, 947, 131–139. [Google Scholar] [CrossRef]
- Franz, G.; Beer, R.; Kampfl, A.; Engelhardt, K.; Schmutzhard, E.; Ulmer, H.; Deisenhammer, F. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 2003, 60, 1457–1461. [Google Scholar] [CrossRef]
- Schmidt, M.L.; Zhukareva, V.; Newell, K.L.; Lee, V.M.; Trojanowski, J.Q. Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathol. 2001, 101, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Graham, D.I.; Murray, L.S.; Nicoll, J.A. Tau immunohistochemistry in acute brain injury. Neuropathol. Appl. Neurobiol. 2003, 29, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Widespread τ and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol. 2012, 22, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Ringger, N.C.; O’Steen, B.E.; Brabham, J.G.; Silver, X.; Pineda, J.; Wang, K.K.; Hayes, R.L.; Papa, L. A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. J. Neurotrauma 2004, 21, 1443–1456. [Google Scholar] [CrossRef]
- Siman, R.; McIntosh, T.K.; Soltesz, K.M.; Chen, Z.; Neumar, R.W.; Roberts, V.L. Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol. Dis. 2004, 16, 311–320. [Google Scholar] [CrossRef]
- Gabbita, S.P.; Scheff, S.W.; Menard, R.M.; Roberts, K.; Fugaccia, I.; Zemlan, F.P. Cleaved-tau: A biomarker of neuronal damage after traumatic brain injury. J. Neurotrauma 2005, 22, 83–94. [Google Scholar] [CrossRef]
- Rostami, E.; Davidsson, J.; Ng, K.C.; Lu, J.; Gyorgy, A.; Walker, J.; Wingo, D.; Plantman, S.; Bellander, B.M.; Agoston, D.V.; et al. A Model for Mild Traumatic Brain Injury that Induces Limited Transient Memory Impairment and Increased Levels of Axon Related Serum Biomarkers. Front. Neurol. 2012, 3, 115. [Google Scholar] [CrossRef]
- Liliang, P.C.; Liang, C.L.; Lu, K.; Wang, K.W.; Weng, H.C.; Hsieh, C.H.; Tsai, Y.D.; Chen, H.J. Relationship between injury severity and serum tau protein levels in traumatic brain injured rats. Resuscitation 2010, 81, 1205–1208. [Google Scholar] [CrossRef]
- Drewes, G.; Trinczek, B.; Illenberger, S.; Biernat, J.; Schmitt-Ulms, G.; Meyer, H.E.; Mandelkow, E.M.; Mandelkow, E. Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem. 1995, 270, 7679–7688. [Google Scholar]
- Dickey, C.A.; Kamal, A.; Lundgren, K.; Klosak, N.; Bailey, R.M.; Dunmore, J.; Ash, P.; Shoraka, S.; Zlatkovic, J.; Eckman, C.B.; et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Investig. 2007, 117, 648–658. [Google Scholar] [CrossRef]
- Sengupta, A.; Kabat, J.; Novak, M.; Wu, Q.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch. Biochem. Biophys. 1998, 357, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Utton, M.A.; Vandecandelaere, A.; Wagner, U.; Reynolds, C.H.; Gibb, G.M.; Miller, C.C.; Bayley, P.M.; Anderton, B.H. Phosphorylation of tau by glycogen synthase kinase 3beta affects the ability of tau to promote microtubule self-assembly. Biochem. J. 1997, 323 Pt 3, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.X.; Singh, T.J.; Grundke-Iqbal, I.; Iqbal, K. Alzheimer’s disease abnormally phosphorylated tau is dephosphorylated by protein phosphatase-2B (calcineurin). J. Neurochem. 1994, 62, 803–806. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.X.; Grundke-Iqbal, I.; Damuni, Z.; Iqbal, K. Dephosphorylation of microtubule-associated protein tau by protein phosphatase-1 and -2C and its implication in Alzheimer disease. FEBS Lett. 1994, 341, 94–98. [Google Scholar] [CrossRef]
- Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989, 3, 19–26. [Google Scholar] [CrossRef]
- Arai, T.; Ikeda, K.; Akiyama, H.; Shikamoto, Y.; Tsuchiya, K.; Yagishita, S.; Beach, T.; Rogers, J.; Schwab, C.; McGeer, P.L. Distinct isoforms of tau aggregated in neurons and glial cells in brains of patients with Pick’s disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol. 2001, 101, 167–173. [Google Scholar] [CrossRef]
- Togo, T.; Dickson, D.W. Tau accumulation in astrocytes in progressive supranuclear palsy is a degenerative rather than a reactive process. Acta Neuropathol. 2002, 104, 398–402. [Google Scholar] [CrossRef]
- de Silva, R.; Lashley, T.; Gibb, G.; Hanger, D.; Hope, A.; Reid, A.; Bandopadhyay, R.; Utton, M.; Strand, C.; Jowett, T.; et al. Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol. Appl. Neurobiol. 2003, 29, 288–302. [Google Scholar] [CrossRef]
- Hauw, J.J.; Verny, M.; Delaère, P.; Cervera, P.; He, Y.; Duyckaerts, C. Constant neurofibrillary changes in the neocortex in progressive supranuclear palsy. Basic differences with Alzheimer’s disease and aging. Neurosci. Lett. 1990, 119, 182–186. [Google Scholar] [CrossRef]
- Holzer, M.; Holzapfel, H.P.; Zedlick, D.; Brückner, M.K.; Arendt, T. Abnormally phosphorylated tau protein in Alzheimer’s disease: Heterogeneity of individual regional distribution and relationship to clinical severity. Neuroscience 1994, 63, 499–516. [Google Scholar] [CrossRef]
- Sanchez-Varo, R.; Trujillo-Estrada, L.; Sanchez-Mejias, E.; Torres, M.; Baglietto-Vargas, D.; Moreno-Gonzalez, I.; De Castro, V.; Jimenez, S.; Ruano, D.; Vizuete, M.; et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol. 2012, 123, 53–70. [Google Scholar] [CrossRef]
- Plouffe, V.; Mohamed, N.V.; Rivest-McGraw, J.; Bertrand, J.; Lauzon, M.; Leclerc, N. Hyperphosphorylation and cleavage at D421 enhance tau secretion. PLoS ONE 2012, 7, e36873. [Google Scholar] [CrossRef]
- Simón, D.; Hernández, F.; Avila, J. The involvement of cholinergic neurons in the spreading of tau pathology. Front. Neurol. 2013, 4, 74. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.A.; Sogolow, E.D. Gender differences for non-fatal unintentional fall related injuries among older adults. Inj. Prev. 2005, 11, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Stocchetti, N.; Paternò, R.; Citerio, G.; Beretta, L.; Colombo, A. Traumatic brain injury in an aging population. J. Neurotrauma 2012, 29, 1119–1125. [Google Scholar] [CrossRef]
- Topper, A.K.; Maki, B.E.; Holliday, P.J. Are activity-based assessments of balance and gait in the elderly predictive of risk of falling and/or type of fall? J. Am. Geriatr. Soc. 1993, 41, 479–487. [Google Scholar] [CrossRef]
- Davidson, L.L.; Hughes, S.J.; O’Connor, P.A. Preschool behavior problems and subsequent risk of injury. Pediatrics 1988, 82, 644–651. [Google Scholar] [CrossRef]
- Hall, D.M.; Johnson, S.L.; Middleton, J. Rehabilitation of head injured children. Arch. Dis. Child. 1990, 65, 553–556. [Google Scholar] [CrossRef]
- Max, J.E.; Castillo, C.S.; Bokura, H.; Robin, D.A.; Lindgren, S.D.; Smith, W.L., Jr.; Sato, Y.; Mattheis, P.J. Oppositional defiant disorder symptomatology after traumatic brain injury: A prospective study. J. Nerv. Ment. Dis. 1998, 186, 325–332. [Google Scholar] [CrossRef]
- Taylor, H.G.; Yeates, K.O.; Wade, S.L.; Drotar, D.; Stancin, T.; Minich, N. A prospective study of short- and long-term outcomes after traumatic brain injury in children: Behavior and achievement. Neuropsychology 2002, 16, 15–27. [Google Scholar] [CrossRef]
- Max, J.E.; Castillo, C.S.; Robin, D.A.; Lindgren, S.D.; Smith, W.L., Jr.; Sato, Y.; Mattheis, P.J.; Stierwalt, J.A. Predictors of family functioning after traumatic brain injury in children and adolescents. J. Am. Acad Child. Adolesc. Psychiatry 1998, 37, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Maas, A.I.R.; Roozenbeek, B.; Manley, G.T. Clinical trials in traumatic brain injury: Past experience and current developments. Neurotherapeutics 2010, 7, 115–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pincus, T.; Morley, S. Cognitive-processing bias in chronic pain: A review and integration. Psychol. Bull. 2001, 127, 599–617. [Google Scholar] [CrossRef] [PubMed]
- Azar, S.T. Preventing burnout in professionals and paraprofessionals who work with child abuse and neglect cases: A cognitive behavioral approach to supervision. J. Clin. Psychol. 2000, 56, 643–663. [Google Scholar] [CrossRef]
- Chu, A.T.; Lieberman, A.F. Clinical implications of traumatic stress from birth to age five. Annu. Rev. Clin. Psychol. 2010, 6, 469–494. [Google Scholar] [CrossRef]
- Li, L.; Liu, J. The effect of pediatric traumatic brain injury on behavioral outcomes: A systematic review. Dev. Med. Child. Neurol. 2013, 55, 37–45. [Google Scholar] [CrossRef]
- Narayan, R.K.; Michel, M.E.; Ansell, B.; Baethmann, A.; Biegon, A.; Bracken, M.B.; Bullock, M.R.; Choi, S.C.; Clifton, G.L.; Contant, C.F.; et al. Clinical trials in head injury. J. Neurotrauma 2002, 19, 503–557. [Google Scholar] [CrossRef]
- Rogawski, M.A. Therapeutic potential of excitatory amino acid antagonists: Channel blockers and 2,3-benzodiazepines. Trends Pharmacol. Sci. 1993, 14, 325–331. [Google Scholar] [CrossRef]
- Xiong, Y.; Mahmood, A.; Chopp, M. Emerging treatments for traumatic brain injury. Expert. Opin. Emerg. Drugs 2009, 14, 67–84. [Google Scholar] [CrossRef]
- Bramlett, H.M.; Dietrich, W.D. Pathophysiology of Cerebral Ischemia and Brain Trauma: Similarities and Differences. J. Cereb. Blood Flow Metab. 2004, 24, 133–150. [Google Scholar] [CrossRef]
- Wakai, A.; Roberts, I.; Schierhout, G. Mannitol for acute traumatic brain injury. Cochrane Database Syst. Rev. 2007, 4, Cd001049. [Google Scholar] [CrossRef]
- Peterson, K.; Carson, S.; Carney, N. Hypothermia treatment for traumatic brain injury: A systematic review and meta-analysis. J. Neurotrauma 2008, 25, 62–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marmarou, A. Increased intracranial pressure in head injury and influence of blood volume. J. Neurotrauma 1992, 9 (Suppl. S1), S327–S332. [Google Scholar] [PubMed]
- Sahuquillo, J.; Dennis, J.A. Decompressive craniectomy for the treatment of high intracranial pressure in closed traumatic brain injury. Cochrane Database Syst. Rev. 2019, 12, Cd003983. [Google Scholar] [CrossRef]
- Wang, K.K.; Larner, S.F.; Robinson, G.; Hayes, R.L. Neuroprotection targets after traumatic brain injury. Curr. Opin. Neurol. 2006, 19, 514–519. [Google Scholar] [CrossRef]
- Heizmann, C.W.; Fritz, G.; Schäfer, B.W. S100 proteins: Structure, functions and pathology. Front. Biosci. 2002, 7, d1356–d1368. [Google Scholar] [CrossRef]
- Wunderlich, M.T.; Wallesch, C.W.; Goertler, M. Release of neurobiochemical markers of brain damage is related to the neurovascular status on admission and the site of arterial occlusion in acute ischemic stroke. J. Neurol. Sci 2004, 227, 49–53. [Google Scholar] [CrossRef]
- Van Eldik, L.J.; Wainwright, M.S. The Janus face of glial-derived S100B: Beneficial and detrimental functions in the brain. Restor. Neurol. Neurosci. 2003, 21, 97–108. [Google Scholar]
- Hayakata, T.; Shiozaki, T.; Tasaki, O.; Ikegawa, H.; Inoue, Y.; Toshiyuki, F.; Hosotubo, H.; Kieko, F.; Yamashita, T.; Tanaka, H.; et al. Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock 2004, 22, 102–107. [Google Scholar] [CrossRef]
- Gonçalves, C.A.; Leite, M.C.; Nardin, P. Biological and methodological features of the measurement of S100B, a putative marker of brain injury. Clin. Biochem. 2008, 41, 755–763. [Google Scholar] [CrossRef]
- Pelinka, L.E.; Kroepfl, A.; Leixnering, M.; Buchinger, W.; Raabe, A.; Redl, H. GFAP versus S100B in serum after traumatic brain injury: Relationship to brain damage and outcome. J. Neurotrauma 2004, 21, 1553–1561. [Google Scholar] [CrossRef] [PubMed]
- Piazza, O.; Storti, M.P.; Cotena, S.; Stoppa, F.; Perrotta, D.; Esposito, G.; Pirozzi, N.; Tufano, R. S100B is not a reliable prognostic index in paediatric TBI. Pediatr. Neurosurg. 2007, 43, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, A.; Hesse, F.; Bullock, M.R.; Buchfelder, M. The neurotrophic protein S100B: Value as a marker of brain damage and possible therapeutic implications. Prog. Brain Res. 2007, 161, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, A.; Ross Bullock, M. A critical analysis of the role of the neurotrophic protein S100B in acute brain injury. J. Neurotrauma 2006, 23, 1185–1200. [Google Scholar] [CrossRef]
- Korfias, S.; Stranjalis, G.; Boviatsis, E.; Psachoulia, C.; Jullien, G.; Gregson, B.; Mendelow, A.D.; Sakas, D.E. Serum S-100B protein monitoring in patients with severe traumatic brain injury. Intensive Care Med. 2007, 33, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chopp, M. Neurorestorative treatment of stroke: Cell and pharmacological approaches. NeuroRx 2006, 3, 466–473. [Google Scholar] [CrossRef]
- Lu, D.; Goussev, A.; Chen, J.; Pannu, P.; Li, Y.; Mahmood, A.; Chopp, M. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J. Neurotrauma 2004, 21, 21–32. [Google Scholar] [CrossRef]
- Wu, H.; Lu, D.; Jiang, H.; Xiong, Y.; Qu, C.; Li, B.; Mahmood, A.; Zhou, D.; Chopp, M. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J. Neurotrauma 2008, 25, 130–139. [Google Scholar] [CrossRef]
- Chen, S.F.; Hung, T.H.; Chen, C.C.; Lin, K.H.; Huang, Y.N.; Tsai, H.C.; Wang, J.Y. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci. 2007, 81, 288–298. [Google Scholar] [CrossRef]
- Wang, H.; Lynch, J.R.; Song, P.; Yang, H.J.; Yates, R.B.; Mace, B.; Warner, D.S.; Guyton, J.R.; Laskowitz, D.T. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Exp. Neurol. 2007, 206, 59–69. [Google Scholar] [CrossRef]
- Lu, D.; Qu, C.; Goussev, A.; Jiang, H.; Lu, C.; Schallert, T.; Mahmood, A.; Chen, J.; Li, Y.; Chopp, M. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J. Neurotrauma 2007, 24, 1132–1146. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Perez, J.; Sanchez-Aguilar, M.; Torres-Corzo, J.G.; Gordillo-Moscoso, A.; Martinez-Perez, P.; Madeville, P.; de la Cruz-Mendoza, E.; Chalita-Williams, J. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758). J. Neurotrauma 2008, 25, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Lu, D.; Qu, C.; Goussev, A.; Chopp, M. Treatment of traumatic brain injury with a combination therapy of marrow stromal cells and atorvastatin in rats. Neurosurgery 2007, 60, 546–553; discussion 553–554. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.K.; Ko, Y.C.; Kuo, T.K.; Chou, S.H.; Li, H.J.; Chen, W.M.; Chen, T.H.; Su, Y. Fluvastatin and lovastatin but not pravastatin induce neuroglial differentiation in human mesenchymal stem cells. J. Cell Biochem. 2004, 93, 917–928. [Google Scholar] [CrossRef]
- Uddin, M.S.; Mamun, A.A.; Jakaria, M.; Thangapandiyan, S.; Ahmad, J.; Rahman, M.A.; Mathew, B.; Abdel-Daim, M.M.; Aleya, L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci. Total Environ. 2020, 707, 135624. [Google Scholar] [CrossRef]
- An, Y.W.; Jhang, K.A.; Woo, S.Y.; Kang, J.L.; Chong, Y.H. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol. Aging 2016, 38, 1–10. [Google Scholar] [CrossRef]
- Kennedy, D.O. Plants and the Human Brain; Kennedy, D.O., Ed.; Oxford University Press: New York, NY, USA, 2014; p. 379. [Google Scholar]
- Lee, J.; Jo, D.G.; Park, D.; Chung, H.Y.; Mattson, M.P. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacol. Rev. 2014, 66, 815–868. [Google Scholar] [CrossRef]
- Wöll, S.; Kim, S.H.; Greten, H.J.; Efferth, T. Animal plant warfare and secondary metabolite evolution. Nat. Prod. Bioprospect. 2013, 3, 1–7. [Google Scholar] [CrossRef]
- Halpern, J.H. Hallucinogens and dissociative agents naturally growing in the United States. Pharmacol. Ther. 2004, 102, 131–138. [Google Scholar] [CrossRef]
- Mattson, M.P.; Son, T.G.; Camandola, S. Viewpoint: Mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response 2007, 5, 174–186. [Google Scholar] [CrossRef]
- Hallahan, D.L.; West, J.M. Cytochrome P-450 in plant/insect interactions: Geraniol 10-hydroxylase and the biosynthesis of iridoid monoterpenoids. Drug Metabol. Drug Interact. 1995, 12, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O.; Wightman, E.L. Herbal extracts and phytochemicals: Plant secondary metabolites and the enhancement of human brain function. Adv. Nutr. 2011, 2, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Misra, J.R.; Lam, G.; Thummel, C.S. Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect. Biochem. Mol. Biol. 2013, 43, 1116–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, K.; Andrews, L.; Krause, J.; Hanak, T.; Lee, D.; Gelb, M.; Pallanck, L. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson’s disease through an NRF2-dependent mechanism. J. Neurosci. 2010, 30, 5525–5532. [Google Scholar] [CrossRef]
- Calabrese, V.; Cornelius, C.; Mancuso, C.; Pennisi, G.; Calafato, S.; Bellia, F.; Bates, T.E.; Giuffrida Stella, A.M.; Schapira, T.; Dinkova Kostova, A.T.; et al. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res. 2008, 33, 2444–2471. [Google Scholar] [CrossRef]
- Malin, D.H.; Lee, D.R.; Goyarzu, P.; Chang, Y.H.; Ennis, L.J.; Beckett, E.; Shukitt-Hale, B.; Joseph, J.A. Short-term blueberry-enriched diet prevents and reverses object recognition memory loss in aging rats. Nutrition 2011, 27, 338–342. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, H.F.; Zhang, Z.F.; Liu, Z.G.; Pei, X.R.; Wang, J.B.; Cai, M.Y.; Li, Y. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 2009, 159, 1208–1215. [Google Scholar] [CrossRef]
- Schroeter, H.; Bahia, P.; Spencer, J.P.; Sheppard, O.; Rattray, M.; Cadenas, E.; Rice-Evans, C.; Williams, R.J. (-)Epicatechin stimulates ERK-dependent cyclic AMP response element activity and up-regulates GluR2 in cortical neurons. J. Neurochem. 2007, 101, 1596–1606. [Google Scholar] [CrossRef]
- Williams, C.M.; El Mohsen, M.A.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med. 2008, 45, 295–305. [Google Scholar] [CrossRef]
- Connolly, S.; Kingsbury, T.J. Caffeine modulates CREB-dependent gene expression in developing cortical neurons. Biochem. Biophys. Res. Commun. 2010, 397, 152–156. [Google Scholar] [CrossRef]
- van den Heuvel, C.; Vink, R. The role of magnesium in traumatic brain injury. Clin. Calcium 2004, 14, 9–14. [Google Scholar] [PubMed]
- Vink, R.; O’Connor, C.A.; Nimmo, A.J.; Heath, D.L. Magnesium attenuates persistent functional deficits following diffuse traumatic brain injury in rats. Neurosci. Lett. 2003, 336, 41–44. [Google Scholar] [CrossRef]
- Barbre, A.B.; Hoane, M.R. Magnesium and riboflavin combination therapy following cortical contusion injury in the rat. Brain Res. Bull. 2006, 69, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Hoane, M.R. Assessment of cognitive function following magnesium therapy in the traumatically injured brain. Magnes Res. 2007, 20, 229–236. [Google Scholar] [PubMed]
- Hoane, M.R.; Knotts, A.A.; Akstulewicz, S.L.; Aquilano, M.; Means, L.W. The behavioral effects of magnesium therapy on recovery of function following bilateral anterior medial cortex lesions in the rat. Brain Res. Bull. 2003, 60, 105–114. [Google Scholar] [CrossRef]
- Schizodimos, T.; Soulountsi, V.; Iasonidou, C.; Kapravelos, N. An overview of management of intracranial hypertension in the intensive care unit. J. Anesth. 2020, 34, 741–757. [Google Scholar] [CrossRef]
- Turkoglu, O.F.; Eroglu, H.; Okutan, O.; Tun, M.K.; Bodur, E.; Sargon, M.F.; Oner, L.; Beskonakli, E. A comparative study of treatment for brain edema: Magnesium sulphate versus dexamethasone sodium phosphate. J. Clin. Neurosci. 2008, 15, 60–65. [Google Scholar] [CrossRef]
- Arango, M.F.; Bainbridge, D. Magnesium for acute traumatic brain injury. Cochrane Database Syst. Rev. 2008, 4, Cd005400. [Google Scholar] [CrossRef]
- Temkin, N.R.; Anderson, G.D.; Winn, H.R.; Ellenbogen, R.G.; Britz, G.W.; Schuster, J.; Lucas, T.; Newell, D.W.; Mansfield, P.N.; Machamer, J.E.; et al. Magnesium sulfate for neuroprotection after traumatic brain injury: A randomised controlled trial. Lancet Neurol. 2007, 6, 29–38. [Google Scholar] [CrossRef]
- Roberts, I.; Sydenham, E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst. Rev. 2012, 12, Cd000033. [Google Scholar] [CrossRef]
- Llompart-Pou, J.A.; Pérez-Bárcena, J.; Raurich, J.M.; Burguera, B.; Ayestarán, J.I.; Abadal, J.M.; Homar, J.; Ibáñez, J. Effect of barbiturate coma on adrenal response in patients with traumatic brain injury. J. Endocrinol. Investig. 2007, 30, 393–398. [Google Scholar] [CrossRef]
- Goss, C.W.; Hoffman, S.W.; Stein, D.G. Behavioral effects and anatomic correlates after brain injury: A progesterone dose-response study. Pharmacol. Biochem. Behav. 2003, 76, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Ankarcrona, M.; Dypbukt, J.M.; Bonfoco, E.; Zhivotovsky, B.; Orrenius, S.; Lipton, S.A.; Nicotera, P. Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995, 15, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Cigel, A.; Sayin, O.; Gurgen, S.G.; Sonmez, A. Long term neuroprotective effects of acute single dose MK-801treatment against traumatic brain injury in immature rats. Neuropeptides 2021, 88, 102161. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.; Friedman, A.; Hameed, M.Q.; Kaminski, R.M.; Bar-Klein, G.; Klitgaard, H.; Koepp, M.; Jozwiak, S.; Prince, D.A.; Rotenberg, A.; et al. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020, 61, 359–386. [Google Scholar] [CrossRef]
- Ikonomidou, C.; Turski, L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? The Lancet Neurol. 2002, 1, 383–386. [Google Scholar] [CrossRef]
- Laird, M.D.; Shields, J.S.; Sukumari-Ramesh, S.; Kimbler, D.E.; Fessler, R.D.; Shakir, B.; Youssef, P.; Yanasak, N.; Vender, J.R.; Dhandapani, K.M. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia 2014, 62, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.; Szarka, N.; Farkas, E.; Ezer, E.; Czeiter, E.; Amrein, K.; Ungvari, Z.; Hartings, J.A.; Buki, A.; Koller, A. Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: Pathomechanisms, perspectives, and therapeutic implications. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H1118–H1131. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.V. Understanding the pathophysiology of traumatic brain injury and the mechanisms of action of neuroprotective interventions. J. Trauma Nurs. JTN 2014, 21, 30–35. [Google Scholar] [CrossRef]
- Lin, C.; Chao, H.; Li, Z.; Xu, X.; Liu, Y.; Hou, L.; Liu, N.; Ji, J. Melatonin attenuates traumatic brain injury-induced inflammation: A possible role for mitophagy. J. Pineal Res. 2016, 61, 177–186. [Google Scholar] [CrossRef]
- Ding, K.; Wang, H.; Xu, J.; Li, T.; Zhang, L.; Ding, Y.; Zhu, L.; He, J.; Zhou, M. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: The Nrf2–ARE signaling pathway as a potential mechanism. Free. Radic. Biol. Med. 2014, 73, 1–11. [Google Scholar] [CrossRef]
- Zamanian, M.Y.; Taheri, N.; Opulencia, M.J.C.; Bokov, D.O.; Abdullaev, S.Y.; Gholamrezapour, M.; Heidari, M.; Bazmandegan, G. Neuroprotective and Anti-inflammatory Effects of Pioglitazone on Traumatic Brain Injury. Mediat. Inflamm. 2022, 2022, 9860855. [Google Scholar] [CrossRef] [PubMed]
- Bergold, P.J. Treatment of traumatic brain injury with anti-inflammatory drugs. Exp. Neurol. 2016, 275 Pt 3, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Kreutzberg, G.W. Microglia: A sensor for pathological events in the CNS. Trends Neurosci. 1996, 19, 312–318. [Google Scholar] [CrossRef]
- Chio, C.C.; Lin, J.W.; Chang, M.W.; Wang, C.C.; Kuo, J.R.; Yang, C.Z.; Chang, C.P. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J. Neurochem. 2010, 115, 921–929. [Google Scholar] [CrossRef]
- Schurman, L.D.; Lichtman, A.H. Endocannabinoids: A promising impact for traumatic brain injury. Front. Pharmacol. 2017, 8, 69. [Google Scholar] [CrossRef]
- Magid, L.; Heymann, S.; Elgali, M.; Avram, L.; Cohen, Y.; Liraz-Zaltsman, S.; Mechoulam, R.; Shohami, E. Role of CB2 receptor in the recovery of mice after traumatic brain injury. J. Neurotrauma 2019, 36, 1836–1846. [Google Scholar] [CrossRef]
- Cernak, I.; Stoica, B.A.; Byrnes, K.R.; Giovanni, S.D.; Faden, A.I. Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle 2005, 4, 1286–1293. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Zhou, C.; Wu, Y.; Sun, J.; Gao, X.; Huang, Y. Biological Effects and Mechanisms of Caspases in Early Brain Injury after Subarachnoid Hemorrhage. Oxid Med. Cell Longev. 2022, 2022, 3345637. [Google Scholar] [CrossRef]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef]
- Bothwell, S.W.; Janigro, D.; Patabendige, A. Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases. Fluids Barriers CNS 2019, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Smith, M. Monitoring intracranial pressure in traumatic brain injury. Anesth. Analg. 2008, 106, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.R. Traumatic Brain Injury: Current Treatment Strategies and Future Endeavors. Cell Transplant. 2017, 26, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- Feldman, Z.; Kanter, M.J.; Robertson, C.S.; Contant, C.F.; Hayes, C.; Sheinberg, M.A.; Villareal, C.A.; Narayan, R.K.; Grossman, R.G. Effect of head elevation on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in head-injured patients. J. Neurosurg. 1992, 76, 207–211. [Google Scholar] [CrossRef]
- Cohn, E.M. Handbook of Neurosurgery, 7th Edition. Neuro-Ophthalmol. 2011, 35, 54. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef]
- Grubb, R.L., Jr.; Raichle, M.E.; Eichling, J.O.; Ter-Pogossian, M.M. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974, 5, 630–639. [Google Scholar] [CrossRef]
- Baig, S.; Moyle, B.; Nair, K.P.S.; Redgrave, J.; Majid, A.; Ali, A. Remote ischaemic conditioning for stroke: Unanswered questions and future directions. Stroke Vasc. Neurol. 2021, 6, 298–309. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, F.; Li, S.; Wu, C.; Gu, F.; Zhang, Q.; Gao, X.; Gao, Z.; Song, H.; Wang, Y.; et al. Remote Ischemic Conditioning for Intracerebral Hemorrhage (RICH-1): Rationale and Study Protocol for a Pilot Open-Label Randomized Controlled Trial. Front. Neurol. 2020, 11, 313. [Google Scholar] [CrossRef]
- Ren, C.; Yan, Z.; Wei, D.; Gao, X.; Chen, X.; Zhao, H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009, 1288, 88–94. [Google Scholar] [CrossRef]
- Gao, X.; Ren, C.; Zhao, H. Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. J. Neurosci. Res. 2008, 86, 2505–2511. [Google Scholar] [CrossRef] [PubMed]
- England, T.J.; Hedstrom, A.; O’Sullivan, S.; Donnelly, R.; Barrett, D.A.; Sarmad, S.; Sprigg, N.; Bath, P.M. RECAST (Remote Ischemic Conditioning after Stroke Trial): A Pilot Randomized Placebo Controlled Phase II Trial in Acute Ischemic Stroke. Stroke 2017, 48, 1412–1415. [Google Scholar] [CrossRef]
- He, Y.D.; Guo, Z.N.; Qin, C.; Jin, H.; Zhang, P.; Abuduxukuer, R.; Yang, Y. Remote ischemic conditioning combined with intravenous thrombolysis for acute ischemic stroke. Ann. Clin. Transl. Neurol. 2020, 7, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Katsnelson, M.; Dong, C.; Perez-Pinzon, M. Remote ischemic limb preconditioning after subarachnoid hemorrhage: A phase Ib study of safety and feasibility. Stroke 2011, 42, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, N.R.; Connolly, M.; Dusick, J.R.; Bhakta, H.; Vespa, P. Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery 2014, 75, 590–598; discussion 598. [Google Scholar] [CrossRef]
- Laiwalla, A.N.; Ooi, Y.C.; Liou, R.; Gonzalez, N.R. Matched Cohort Analysis of the Effects of Limb Remote Ischemic Conditioning in Patients with Aneurysmal Subarachnoid Hemorrhage. Transl. Stroke Res. 2016, 7, 42–48. [Google Scholar] [CrossRef]
- Meng, R.; Asmaro, K.; Meng, L.; Liu, Y.; Ma, C.; Xi, C.; Li, G.; Ren, C.; Luo, Y.; Ling, F.; et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 2012, 79, 1853–1861. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, W.; Ma, H.; Zhang, Y.; Che, R.; Bian, T.; Yan, H.; Xu, J.; Wang, L.; Yu, W.; et al. Remote Ischemic Conditioning in the Prevention for Stroke-Associated Pneumonia: A Pilot Randomized Controlled Trial. Front. Neurol. 2021, 12, 723342. [Google Scholar] [CrossRef]
- Kharbanda, R.K.; Peters, M.; Walton, B.; Kattenhorn, M.; Mullen, M.; Klein, N.; Vallance, P.; Deanfield, J.; MacAllister, R. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation 2001, 103, 1624–1630. [Google Scholar] [CrossRef]
- Harkin, D.W.; Barros D’Sa, A.A.; McCallion, K.; Hoper, M.; Campbell, F.C. Ischemic preconditioning before lower limb ischemia--reperfusion protects against acute lung injury. J. Vasc Surg 2002, 35, 1264–1273. [Google Scholar] [CrossRef]
- Chao de la Barca, J.M.; Bakhta, O.; Kalakech, H.; Simard, G.; Tamareille, S.; Catros, V.; Callebert, J.; Gadras, C.; Tessier, L.; Reynier, P.; et al. Metabolic Signature of Remote Ischemic Preconditioning Involving a Cocktail of Amino Acids and Biogenic Amines. J. Am. Heart Assoc. 2016, 5, e003891. [Google Scholar] [CrossRef] [PubMed]
- Addison, P.D.; Neligan, P.C.; Ashrafpour, H.; Khan, A.; Zhong, A.; Moses, M.; Forrest, C.R.; Pang, C.Y. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H1435–H1443. [Google Scholar] [CrossRef] [PubMed]
- Moses, M.A.; Addison, P.D.; Neligan, P.C.; Ashrafpour, H.; Huang, N.; Zair, M.; Rassuli, A.; Forrest, C.R.; Grover, G.J.; Pang, C.Y. Mitochondrial KATP channels in hindlimb remote ischemic preconditioning of skeletal muscle against infarction. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H559–H567. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef]
- Alganabi, M.; Biouss, G.; Ganji, N.; Yamoto, M.; Lee, C.; Li, B.; Pierro, A. Remote ischemic conditioning causes CD4 T cells shift towards reduced cell-mediated inflammation. Pediatr. Surg Int. 2022, 38, 657–664. [Google Scholar] [CrossRef]
- Dickson, E.W.; Reinhardt, C.P.; Renzi, F.P.; Becker, R.C.; Porcaro, W.A.; Heard, S.O. Ischemic preconditioning may be transferable via whole blood transfusion: Preliminary evidence. J. Thromb. Thrombolysis 1999, 8, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, S.B.; Henning, O.; Kharbanda, R.K.; Nielsen-Kudsk, J.E.; Schmidt, M.R.; Redington, A.N.; Nielsen, T.T.; Botker, H.E. Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H1252–H1256. [Google Scholar] [CrossRef]
- Vaibhav, K.; Braun, M.; Khan, M.B.; Fatima, S.; Saad, N.; Shankar, A.; Khan, Z.T.; Harris, R.B.S.; Yang, Q.; Huo, Y.; et al. Remote ischemic post-conditioning promotes hematoma resolution via AMPK-dependent immune regulation. J. Exp. Med. 2018, 215, 2636–2654. [Google Scholar] [CrossRef]
- Zhou, Y.; Fathali, N.; Lekic, T.; Ostrowski, R.P.; Chen, C.; Martin, R.D.; Tang, J.; Zhang, J.H. Remote limb ischemic postconditioning protects against neonatal hypoxic-ischemic brain injury in rat pups by the opioid receptor/Akt pathway. Stroke 2011, 42, 439–444. [Google Scholar] [CrossRef]
- Chen, L.; Huang, K.; Wang, R.; Jiang, Q.; Wu, Z.; Liang, W.; Guo, R.; Wang, L. Neuroprotective Effects of Cerebral Ischemic Preconditioning in a Rat Middle Cerebral Artery Occlusion Model: The Role of the Notch Signaling Pathway. Biomed. Res. Int. 2018, 2018, 8168720. [Google Scholar] [CrossRef]
- Ge, Y.; Zhen, F.; Liu, Z.; Feng, Z.; Wang, G.; Zhang, C.; Wang, X.; Sun, Y.; Zheng, X.; Bai, Y.; et al. Alpha-Asaronol Alleviates Dysmyelination by Enhancing Glutamate Transport Through the Activation of PPARgamma-GLT-1 Signaling in Hypoxia-Ischemia Neonatal Rats. Front. Pharmacol. 2022, 13, 766744. [Google Scholar] [CrossRef]
- Stenzel-Poore, M.P.; Stevens, S.L.; Xiong, Z.; Lessov, N.S.; Harrington, C.A.; Mori, M.; Meller, R.; Rosenzweig, H.L.; Tobar, E.; Shaw, T.E.; et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: Similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 2003, 362, 1028–1037. [Google Scholar] [CrossRef]
- Nicoloff, G.; Tzvetanov, P.; Christova, P.; Baydanoff, S. Detection of elastin derived peptides in cerebrospinal fluid of patients with first ever ischaemic stroke. Neuropeptides 2008, 42, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Tzvetanov, P.; Nicoloff, G.; Rousseff, R.; Christova, P. Increased levels of elastin-derived peptides in cerebrospinal fluid of patients with lacunar stroke. Clin. Neurol. Neurosurg. 2008, 110, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Mecham, R.P. Elastin in lung development and disease pathogenesis. Matrix Biol. 2018, 73, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.D.; Endicott, S.K.; Province, M.A.; Pierce, J.A.; Campbell, E.J. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J. Clin. Investig. 1991, 87, 1828–1834. [Google Scholar] [CrossRef]
- Kuhn, C.; Senior, R.M. The role of elastases in the development of emphysema. Lung 1978, 155, 185–197. [Google Scholar] [CrossRef]
- Russell, R.E.; Thorley, A.; Culpitt, S.V.; Dodd, S.; Donnelly, L.E.; Demattos, C.; Fitzgerald, M.; Barnes, P.J. Alveolar macrophage-mediated elastolysis: Roles of matrix metalloproteinases, cysteine, and serine proteases. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 283, L867–L873. [Google Scholar] [CrossRef]
- Houghton, A.M. Matrix metalloproteinases in destructive lung disease. Matrix Biol. 2015, 44–46, 167–174. [Google Scholar] [CrossRef]
- Mecham, R.P.; Broekelmann, T.J.; Fliszar, C.J.; Shapiro, S.D.; Welgus, H.G.; Senior, R.M. Elastin degradation by matrix metalloproteinases. Cleavage site specificity and mechanisms of elastolysis. J. Biol. Chem. 1997, 272, 18071–18076. [Google Scholar] [CrossRef]
- Rucker, R.B.; Dubick, M.A. Elastin metabolism and chemistry: Potential roles in lung development and structure. Environ. Health Perspect. 1984, 55, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Skeie, J.M.; Hernandez, J.; Hinek, A.; Mullins, R.F. Molecular responses of choroidal endothelial cells to elastin derived peptides through the elastin-binding protein (GLB1). Matrix Biol. 2012, 31, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Scandolera, A.; Odoul, L.; Salesse, S.; Guillot, A.; Blaise, S.; Kawecki, C.; Maurice, P.; El Btaouri, H.; Romier-Crouzet, B.; Martiny, L.; et al. The Elastin Receptor Complex: A Unique Matricellular Receptor with High Anti-tumoral Potential. Front. Pharmacol. 2016, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, J.; Furtak, V.; Lukyanov, P. Extracellular functions of galectin-3. Glycoconj. J. 2002, 19, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Cantarelli, B.; Duca, L.; Blanchevoye, C.; Poitevin, S.; Martiny, L.; Debelle, L. Elastin peptides antagonize ceramide-induced apoptosis. FEBS Lett. 2009, 583, 2385–2391. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nangia-Makker, P.; Tait, L.; Balan, V.; Hogan, V.; Pienta, K.J.; Raz, A. Regulation of prostate cancer progression by galectin-3. Am. J. Pathol. 2009, 174, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, U.R.; Weiss, A.S. Integrin alpha v beta 3 binds a unique non-RGD site near the C-terminus of human tropoelastin. Biochimie 2004, 86, 173–178. [Google Scholar] [CrossRef]
- Lee, P.; Bax, D.V.; Bilek, M.M.; Weiss, A.S. A novel cell adhesion region in tropoelastin mediates attachment to integrin alphaVbeta5. J. Biol. Chem. 2014, 289, 1467–1477. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Chong, N.V.; Bailey, T.A. Serum elastin-derived peptides in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci 2005, 46, 3046–3051. [Google Scholar] [CrossRef]
- de Haan, P.; Klein, H.C.; ’t Hart, B.A. Autoimmune Aspects of Neurodegenerative and Psychiatric Diseases: A Template for Innovative Therapy. Front. Psychiatry 2017, 8, 46. [Google Scholar] [CrossRef]
- Ma, C.; Su, J.; Sun, Y.; Feng, Y.; Shen, N.; Li, B.; Liang, Y.; Yang, X.; Wu, H.; Zhang, H.; et al. Significant Upregulation of Alzheimer’s beta-Amyloid Levels in a Living System Induced by Extracellular Elastin Polypeptides. Angew. Chem. Int. Ed. Engl. 2019, 58, 18703–18709. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Gminski, J. Impact of elastin-derived VGVAPG peptide on bidirectional interaction between peroxisome proliferator-activated receptor gamma (Pparγ) and beta-galactosidase (β-Gal) expression in mouse cortical astrocytes in vitro. Naunyn. Schmiedebergs Arch. Pharmacol. 2019, 392, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Szychowski, K.A.; Gminski, J. Elastin-derived peptide VGVAPG affects the proliferation of mouse cortical astrocytes with the involvement of aryl hydrocarbon receptor (Ahr), peroxisome proliferator-activated receptor gamma (Pparγ), and elastin-binding protein (EBP). Cytokine 2020, 126, 154930. [Google Scholar] [CrossRef] [PubMed]
- Szychowski, K.A.; Skora, B.; Wojtowicz, A.K. Elastin-Derived Peptides in the Central Nervous System: Friend or Foe. Cell Mol. Neurobiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Hinek, A.; Tsugu, A.; Hubbard, S.L.; Ackerley, C.; Becker, L.E.; Rutka, J.T. Astrocytoma cell interaction with elastin substrates: Implications for astrocytoma invasive potential. Glia 1999, 25, 179–189. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Wojtowicz, A.K.; Gminski, J. Impact of Elastin-Derived Peptide VGVAPG on Matrix Metalloprotease-2 and -9 and the Tissue Inhibitor of Metalloproteinase-1, -2, -3 and -4 mRNA Expression in Mouse Cortical Glial Cells In Vitro. Neurotox Res. 2019, 35, 100–110. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Gminski, J. The VGVAPG Peptide Regulates the Production of Nitric Oxide Synthases and Reactive Oxygen Species in Mouse Astrocyte Cells In Vitro. Neurochem. Res. 2019, 44, 1127–1137. [Google Scholar] [CrossRef]
- Fulop, T.; Khalil, A.; Larbi, A. The role of elastin peptides in modulating the immune response in aging and age-related diseases. Pathol. Biol. 2012, 60, 28–33. [Google Scholar] [CrossRef]
- Savitz, S.I.; Cox, C.S., Jr. Concise Review: Cell Therapies for Stroke and Traumatic Brain Injury: Targeting Microglia. Stem Cells 2016, 34, 537–542. [Google Scholar] [CrossRef]
- Webb, R.L.; Kaiser, E.E.; Scoville, S.L.; Thompson, T.A.; Fatima, S.; Pandya, C.; Sriram, K.; Swetenburg, R.L.; Vaibhav, K.; Arbab, A.S.; et al. Human Neural Stem Cell Extracellular Vesicles Improve Tissue and Functional Recovery in the Murine Thromboembolic Stroke Model. Transl. Stroke Res. 2018, 9, 530–539. [Google Scholar] [CrossRef]
- Cox, C.S., Jr.; Hetz, R.A.; Liao, G.P.; Aertker, B.M.; Ewing-Cobbs, L.; Juranek, J.; Savitz, S.I.; Jackson, M.L.; Romanowska-Pawliczek, A.M.; Triolo, F.; et al. Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells. Stem Cells 2017, 35, 1065–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldman, L.; Siddiqui, E.M.; Khan, A.; Jahan, S.; Rehman, M.U.; Mehan, S.; Sharma, R.; Budkin, S.; Kumar, S.N.; Sahu, A.; et al. Understanding Acquired Brain Injury: A Review. Biomedicines 2022, 10, 2167. https://doi.org/10.3390/biomedicines10092167
Goldman L, Siddiqui EM, Khan A, Jahan S, Rehman MU, Mehan S, Sharma R, Budkin S, Kumar SN, Sahu A, et al. Understanding Acquired Brain Injury: A Review. Biomedicines. 2022; 10(9):2167. https://doi.org/10.3390/biomedicines10092167
Chicago/Turabian StyleGoldman, Liam, Ehraz Mehmood Siddiqui, Andleeb Khan, Sadaf Jahan, Muneeb U Rehman, Sidharth Mehan, Rajat Sharma, Stepan Budkin, Shashi Nandar Kumar, Ankita Sahu, and et al. 2022. "Understanding Acquired Brain Injury: A Review" Biomedicines 10, no. 9: 2167. https://doi.org/10.3390/biomedicines10092167
APA StyleGoldman, L., Siddiqui, E. M., Khan, A., Jahan, S., Rehman, M. U., Mehan, S., Sharma, R., Budkin, S., Kumar, S. N., Sahu, A., Kumar, M., & Vaibhav, K. (2022). Understanding Acquired Brain Injury: A Review. Biomedicines, 10(9), 2167. https://doi.org/10.3390/biomedicines10092167