Environmental Impact of Earthquake-Resistant Design: A Sustainable Approach to Structural Response in High Seismic Risk Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Building
2.2. Structural Design Alternatives
2.3. Structural Design
2.4. Life Cycle Assessment of the Structural Systems
2.4.1. Materials Quantification
2.4.2. Emission and Energy Consumption Factors per Material
2.4.3. Emission and Consumption Factors in Machinery and Equipment
2.4.4. Materials Transportation
2.4.5. Assessment of CO2 Emissions and Energy Consumption per Activity
- EFact: emission factor per activity;
- EFmch: emission factor per machinery;
- EFm: emission factor per material;
- EFt: emission factor per transportation;
- ECFact: energy factor per activity;
- ECFmch: energy factor per machinery;
- ECFm: energy factor per material;
- ECFt: energy factor per transportation.
- TEact: total emission per activity;
- TECact: total energy consumption per activity.
3. Results
3.1. Overall Results
3.2. A Detailed Description of Results per Building Stage
3.3. Influence of the Material on the Emission of CO2 and Energy Consumption
3.4. Environmental Impact of the Structural Elements Used in Each Structural System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Işık, E.; Avcil, F.; İzol, R.; Büyüksaraç, A.; Bilgin, H.; Harirchian, E.; Arkan, E. Field Reconnaissance and Earthquake Vulnerability of the RC Buildings in Adıyaman during 2023 Türkiye Earthquakes. Appl. Sci. 2024, 14, 2860. [Google Scholar] [CrossRef]
- Ivanov, M.L.; Chow, W.-K. Structural damage observed in reinforced concrete buildings in Adiyaman during the 2023 Turkiye Kahramanmaras Earthquakes. Structures 2023, 58, 105578. [Google Scholar] [CrossRef]
- Smith, E.M.; Mooney, W.D. A seismic intensity survey of the 16 April 2016 Mw7.8 Pedernales, Ecuador, Earthquake: A comparison with strong-motion data and teleseismic backprojection. Seismol. Res. Lett. 2021, 92, 2156–2171. [Google Scholar] [CrossRef]
- Viteri, C.V.; Bravo, Y.M.; Gutiérrez, D.D.; Moreira, S.A. A Look at the Traditional Construction During the Earthquake of 7.8 Mw of Pedernales 2016 (Ecuador): The Case of Portoviejo City. In Sustainability and Automation in Smart Constructions: Proceedings of the International Conference on Automation Innovation in Construction (CIAC-2019), Leiria, Portugal, 7–8 November; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 363–375. [Google Scholar] [CrossRef]
- Gonzalez, R.E.; Stephens, M.T.; Toma, C.; Dowdell, D. The Estimated Carbon Cost of Concrete Building Demolitions following the Canterbury Earthquake Sequence. Earthq. Spectra 2022, 38, 1615–1635. [Google Scholar] [CrossRef]
- Shafieezadeh, A.; Ivey Burden, L. Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports. Reliab. Eng. Syst. Saf. 2014, 132, 207–219. [Google Scholar] [CrossRef]
- Welsh-Huggins, S.J.; Liel, A.B. A life-cycle framework for integrating green building and hazard-resistant design: Examining the seismic impacts of buildings with green roofs. Struct. Infrastruct. Eng. 2017, 13, 19–33. [Google Scholar] [CrossRef]
- Gonzalez, R.E.; Stephens, M.T.; Toma, C.; Dowdell, D. Incorporating potential environmental impacts in building seismic design decisions. Bull. Earthq. Eng. 2023, 21, 4385–4428. [Google Scholar] [CrossRef]
- Silva, V.; Akkar, S.; Baker, J.; Bazzurro, P.; Castro, J.M.; Crowley, H.; Dolsek, M.; Galasso, C.; Lagomarsino, S.; Monteiro, R.; et al. Current Challenges and Future Trends in Analytical Fragility and Vulnerability Modeling. Earthq. Spectra 2019, 35, 1927–1952. [Google Scholar] [CrossRef]
- Ruggieri, S.; Calò, M.; Cardellicchio, A.; Uva, G. Analytical-mechanical based framework for seismic overall fragility analysis of existing RC buildings in town compartments. Bull. Earthq. Eng. 2022, 20, 8179–8216. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Di Ludovico, M.; Polese, M.; Manfredi, G.; Prota, A.; Ricci, P.; Verderame, G.M. Seismic fragility for Italian RC buildings based on damage data of the last 50 years. Bull. Earthq. Eng. 2020, 18, 2023–2059. [Google Scholar] [CrossRef]
- Kim, S.; Moon, J.H.; Shin, Y.; Kim, G.H.; Seo, D.S. Life comparative analysis of energy consumption and CO2 emissions of different building structural frame types. Sci. World J. 2013, 2013, 175702. [Google Scholar] [CrossRef] [PubMed]
- Architecture 2030. Why The Building Sector? Available online: https://architecture2030.org/why-the-building-sector/ (accessed on 22 September 2022).
- Ritchie, H.; Rosado, P.; Roser, M. CO2 and Greenhouse Gas Emissions. 2020. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 22 September 2022).
- Google; Ellen MacArthur Foundation. Accelerating the Circular Economy Through Commercial Deconstruction and Reuse, 1st ed.; Ellen MacArthur Foundation: Cowes, UK, 2019; pp. 1–23. [Google Scholar]
- Anink, D.; Boonstra, C.; Mak, J.; Morris, A. Handbook of Sustainable Building: An Environmental Preference Method for Selection of Materials for Use in Construction and Refurbishment; Undefined; James & James: Springdale, AR, USA, 1996. [Google Scholar]
- Cole, R.J. Energy and greenhouse gas emissions associated with the construction of alternative structural systems. Build. Environ. 1998, 34, 335–348. [Google Scholar] [CrossRef]
- Galatowitsch, S.M. Carbon Offsets as Ecological Restorations. Restor. Ecol. 2009, 17, 563–570. [Google Scholar] [CrossRef]
- Harmouche, N.; Ammouri, A.; Srour, I.; Chehab, G.; Hamade, R. Developing a carbon footprint calculator for construction buildings. In Construction Research Congress 2012: Construction Challenges in a Flat World, Proceedings of the 2012 Construction Research Congress, West Lafayette, IN, USA, 21–23 May 2012; ASCE: Reston, VA, USA, 2012; pp. 1689–1699. [Google Scholar] [CrossRef]
- Moussavi Nadoushani, Z.S.; Akbarnezhad, A. Effects of structural system on the life cycle carbon footprint of buildings. Energy Build. 2015, 102, 337–346. [Google Scholar] [CrossRef]
- Paik, I.; Na, S. Comparison of Carbon Dioxide Emissions of the Ordinary Reinforced Concrete Slab and the Voided Slab System During the Construction Phase: A Case Study of a Residential Building in South Korea. Sustainability 2019, 11, 3587. [Google Scholar] [CrossRef]
- Auburtin, P.N.; Saadé, M.; Manthey, M.; Louërat, M.; Martin, J.-L.; Baverel, O. Influence of building geometry on the environmental impact of building structures. J. Phys. Conf. Ser. 2023, 2600, 152001. [Google Scholar] [CrossRef]
- Güereca, L.P. Evaluación de la Huella de Carbono con Enfoque de Análisis de Ciclo de Vida para 12 Sistemas Constructivos; REPORTE FINAL (Versión 2.0 que Incluye Correcciones de Block Cerámico); Instituto de Ingenieria (UNAM): Mexico City, Mexico, 2016. [Google Scholar]
- Casaverde, R. Cuantificación De CO2 Generado Por El Consumo Energético En La Construcción De Viviendas Unifamiliares—SATIPO. Ph.D. Thesis, Universidad Nacional Del Centro Del Perú, Huancayo, Peru, 2016. [Google Scholar]
- Luo, C.; Yao, X.; Zhang, Y.; Zhou, H. An Empirical Study on the Impact of Different Structural Systems on Carbon Emissions of Prefabricated Buildings Based on SimaPro. World J. Eng. Technol. 2023, 11, 434–453. [Google Scholar] [CrossRef]
- Dash, M.K.; Patro, S.K. Effects of water cooled ferrochrome slag as fine aggregate on the properties of concrete. Constr. Build. Mater. 2018, 177, 457–466. [Google Scholar] [CrossRef]
- Karalar, M.; Bilir, T.; Çavuşlu, M.; Özkiliç, Y.O.; Sabri Sabri, M.M. Use of recycled coal bottom ash in reinforced concrete beams as replacement for aggregate. Front. Mater. 2022, 9, 1064604. [Google Scholar] [CrossRef]
- Vázquez-Calle, K.; Guillén-Mena, V.; Quesada-Molina, F. Analysis of the Embodied Energy and CO2 Emissions of Ready-Mixed Concrete: A Case Study in Cuenca, Ecuador. Materials 2022, 15, 4896. [Google Scholar] [CrossRef]
- Narváez, E.N.R.; Maldonado, L. Propuesta de Disminución de Huella de Carbono para Construcción de Edificaciones. Caso de Estudio: Edificio de Ciencias Básicas de la Universidad Técnica de Ambato, Ecuador. Investig. Desarro. 2022, 15, 19–31. [Google Scholar]
- Alvarado, A.; Audin, L.; Nocquet, J.M.; Lagreulet, S.; Segovia, M.; Font, Y.; Lamarque, G.; Yepes, H.; Mothes, P.; Rolandone, F.; et al. Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity. Tectonics 2014, 33, 67–83. [Google Scholar] [CrossRef]
- Organismo Internacional de Energía Atómica. Estudios de Hidrologia Isotopica en America Latina 2006; IAEA: Wagram, Austria, 2009. [Google Scholar]
- Secretaria de Territorio Habitat y V. Plan de Uso y Gestion del Suelo; Secretaria de Territorio Habitat y V: Quito, Ecuador, 2021. [Google Scholar]
- Valverde, J.; Fernández, J.; Jiménez, E.; Vaca, T.; Alarcón, F. Microzonificación Sísmica de los Suelos del Distrito Metropolitano de la Ciudad de Quito; Escuela Politécnica Nacional: Quito, Ecuador, 2002. [Google Scholar]
- ASCE/SEI 7-16; Minimum Design Loads for Buildings and Other Structures. ASCE: Reston, VA, USA, 2017.
- Páez, D. Influencia de muros de mampostería en el comportamiento de edificios de Manta durante el terremoto de 16 de abril del 2016, Pedernales- Ecuador. In Proceedings of the Third Annual State-of-the-Art in Civil Engineering Structures and Materials Conference, Quito, Ecuador, 26–28 July 2017; pp. 1–15. [Google Scholar]
- Ministerio de Desarrollo Urbano y Vivienda (MIDUVI). Norma Ecuatoriana de la Construcción: Estructuras de Hormigón Armado; Ministerio de Desarrollo Urbano y Vivienda (MIDUVI): Quito, Ecuador, 2015. [Google Scholar]
- Ministerio de Desarrollo Urbano y Vivienda (MIDUVI). Norma Ecuatoriana de la Construcción: Peligro Sísmico, Diseño Sismo Resistente; Ministerio de Desarrollo Urbano y Vivienda (MIDUVI): Quito, Ecuador, 2015. [Google Scholar]
- ACI Committee 318. Building Requirements for Structural Concrete and Commentary; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2019; Volume 1. [Google Scholar]
- PAS 2050; Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services. British Standards Institution: London, UK, 2011.
- Cal, A. El Ciclo de Vida de la Madera en la Construcción. Análisis de un Caso Práctico. Master’s Thesis, Universidad de la Coruña: A Coruña, Spain, 2017. [Google Scholar]
- Hammond, G.; Jones, C. Inventory of Carbon amd Energy (ICE); University of Bath—Sustainable Energy Research Team: Bath, UK, 2019. [Google Scholar]
- Lawson, B. Building Materials Energy and Enviroment: Towards Ecologically Sustainable Development; The Royal Australian Institute of Architects: Manukau, New Zealand, 1996. [Google Scholar]
- Cámara Colombiana de la Infraestructura. Informes de Maquinaria; Cámara Colombiana de la Infraestructura: Medellín, Colombia, 2010. [Google Scholar]
- Andres. Potencia de Equipos Eléctricos Más Comunes. Electricaplicada. Available online: https://electricaplicada.com/potencia-consumo-equipos-electricos/ (accessed on 22 September 2022).
- Petroecuador. Memoria de Sostenibilidad; Petroecuador: Quito, Ecuador, 2019. [Google Scholar]
- Comisión Técnica de Determinación de Factores de Emisión de Gases de Efecto Ivernadero—CTFE. Factor De Emisión De Co2 Del Sistema Nacional Interconectado De Ecuador; Informe: Quito, Ecuador, 2019; Volume 2019. [Google Scholar]
- Seo, M.S.; Kim, T.; Hong, G.; Kim, H. On-Site Measurements of CO2 Emissions during the Construction Phase of a Building Complex. Energies 2016, 9, 599. [Google Scholar] [CrossRef]
- Suzuki, M.; Oka, T.; Okada, K. The estimation of energy consumption and CO2 emission due to housing construction in Japan. Energy Build. 1995, 22, 165–169. [Google Scholar] [CrossRef]
- Berrón Ferrer, G. Importancia de incorporar conceptos ambientales en el diseño y construcción de obras civiles. Artíc. Divulg. Berrón G Ing. 2003, 7, 52. [Google Scholar]
- Domínguez, R.; León, M.; Samaniego, J.; Sunkel, O.; Sánchez, J. Desarrollo Sostenible Recursos Naturales, Medio Ambiente y Sostenibilidad 70 Años de Pensamiento de la CEPAL.; Comisión Económica para América Latina y el Caribe: Santiago, Chile, 1948. [Google Scholar]
- Resch, E.; Lausselet, C.; Brattebø, H.; Andresen, I. An analytical method for evaluating and visualizing embodied carbon emissions of buildings. Build. Environ. 2020, 168, 106476. [Google Scholar] [CrossRef]
- CAMICON; Ministerio de Desarrollo Urbano y Vivienda (MIDUVI). Norma Ecuatoriana de la Construcción—NEC: NEC-SE-MP—Mamposteria Estructural; CAMICON: Quito, Ecuador; Ministerio de Desarrollo Urbano y Vivienda (MIDUVI): Quito, Ecuador, 2014. [Google Scholar]
- Mercimek, Ö. Seismic failure modes of masonry structures exposed to Kahramanmaraş earthquakes (Mw 7.7 and 7.6) on February 6, 2023. Eng. Fail. Anal. 2023, 151, 107422. [Google Scholar] [CrossRef]
- Nayak, S.; Dutta, S.C. Failure of masonry structures in earthquake: A few simple cost effective techniques as possible solutions. Eng. Struct. 2016, 106, 53–67. [Google Scholar] [CrossRef]
- Kua, H.W.; Wong, C.L. Analysing the life cycle greenhouse gas emission and energy consumption of a multi-storied commercial building in Singapore from an extended system boundary perspective. Energy Build. 2012, 51, 6–14. [Google Scholar] [CrossRef]
- Pavlović, A.; Donchev, T.; Petkova, D.; Staletović, N. Sustainability of alternative reinforcement for concrete structures: Life cycle assessment of basalt FRP bars. Constr. Build. Mater. 2022, 334, 127424. [Google Scholar] [CrossRef]
- Medina Romero, L. Análisis de la Viabilidad Económica y Ambiental del uso de Armaduras Corrugadas de Acero Inoxidable en Elementos de Hormigón Armado Sometidos a Clases de Exposición Agresivas. Aplicación a Elementos en Contacto con Aguas Residuales Agresivas; Universidad Politécnica de Cataluña: Barcelona, Spain, 2006. [Google Scholar]
Parameter | Unit | Magnitude |
---|---|---|
Latitude | ° | −0.178332 |
Longitude | ° | −78.436299 |
Number of floors | u | 7 |
Number of basements | u | 3 |
Height without basements | m | 18.55 |
Total height (including basements) | m | 26.50 |
Floor area | m2 | 255.43 |
Total floor area | m2 | 4150.1 |
Bearing capacity | MPa | 0.18 |
Description | Magnitude | Units |
---|---|---|
Self-weight of slab | 4.42 | kN/m2 |
Permanent mezzanine loads | 2.15 | kN/m2 |
Permanent roof load | 0.78 | kN/m2 |
Total dead load of mezzanine | 6.57 | kN/m2 |
Total dead load of roof | 5.20 | kN/m2 |
Live load | 1.96 | kN/m2 |
Yield stress of reinforcing steel (fy) | 420 | MPa |
Compressive strength of concrete (f′c) | 28 | MPa |
Allowable compressive strength of soil | 179.85 | kN/m2 |
System | Material | Period | Vibration Modes | Reactive Weight [kN] | Base Shear [kN] | Max Story Drift in X [%] | |||
---|---|---|---|---|---|---|---|---|---|
ETABS [s] | NEC-15 [s] | 1st in X | 2nd in Y | 3rd in RZ | |||||
OFS | RC | 0.834 | 0.762 | 73% | 77% | 73% | 19,721 | 2716 | 1.75 |
ODS | RC | 0.538 | 0.492 | 66% | 67% | 67% | 18,652 | 3079 | 0.83 |
EFS | RC | 0.541 | 0.762 | 69% | 73% | 71% | 35,255 | 5344 | 0.82 |
OFS–EFS (% Difference) | - | 35% | 35% | 10% | 13% | 8% | 3% | - | 53% |
ODS–EFS (% Difference) | - | 1% | 35% | 4% | 8% | 7% | 42% | - | 1% |
(a) | ||||
OFS | ||||
Type of beam | b [cm] | h [cm] | r [cm] | |
V1 (P1-P7) | 40 | 60 | 4 | |
V2 (S2-PB) | 30 | 50 | 4 | |
V3 (S2-P7) | 25 | 25 | 4 | |
ODS | ||||
V1 (P5-P7) | 30 | 50 | 4 | |
V2 (S2-P4) | 35 | 55 | 4 | |
V3 (S2-P7) | 25 | 25 | 4 | |
EFS | ||||
V1 (S2-P7) | 55 | 85 | 4 | |
V2 (S2-P7) | 25 | 40 | 4 | |
OFS | ||||
Type of column | b [cm] | h [cm] | r [cm] | |
C1 (P5-P7) | 50 | 50 | 4 | |
C2 (P5-P7) | 55 | 55 | 4 | |
C3 (P5-P7) | 50 | 55 | 4 | |
C4 (P5-P7) | 55 | 60 | 4 | |
ODS | ||||
C1 (P5-P7) | 50 | 50 | 4 | |
OFS | ||||
C1 (PB-P5) | 60 | 60 | 4 | |
C2 (PB-P5) | 65 | 65 | 4 | |
C3 (PB-P5) | 60 | 65 | 4 | |
C4 (PB-P5) | 65 | 70 | 4 | |
ODS | ||||
C1 (PB-P5) | 55 | 55 | 4 | |
OFS | ||||
C1 (S3-PB) | 60 | 60 | 4 | |
C2 (S3-PB) | 65 | 65 | 4 | |
C3 (S3-PB) | 60 | 65 | 4 | |
C4 (S3-PB) | 65 | 70 | 4 | |
C5 (S3-PB) | 45 | 45 | 3 | |
ODS | ||||
C1 (SB3-PB) | 55 | 55 | 4 | |
EFS | ||||
Type of column | b [cm] | h [cm] | r [cm] | |
C1 (P5-P7) | 110 | 110 | 4 | |
C2 (P5-P7) | 100 | 100 | 4 | |
C1 (S3-P5) | 120 | 120 | 4 | |
C2 (P5-P7) | 100 | 100 | 4 | |
(b) | ||||
OFS | ||||
Type of foundation beam | bf [cm] | hf [cm] | bw [cm] | hw [cm] |
Inverted T Edge Beam | 300 | 40 | 45 | 120 |
Inside Inverted T Beam | 160 | 40 | 45 | 120 |
ODS | ||||
Type of foundation beam | bf [cm] | hf [cm] | bw [cm] | hw [cm] |
Inverted T Edge Beam | 300 | 40 | 45 | 140 |
Inside Inverted T Beam | 160 | 40 | 45 | 140 |
EFS | ||||
Type of foundation beam | bf [cm] | hf [cm] | bw [cm] | hw [cm] |
Inverted T Edge Beam | 300 | 40 | 45 | 140 |
Inside Inverted T Beam | 170 | 40 | 45 | 140 |
(c) | ||||
ODS | ||||
Type of wall | bc [cm] | hc [cm] | L [cm] | e [cm] |
M1- Lower | 35 | 35 | 340 | 25 |
M1- Upper | 30 | 30 | 345 | 20 |
M2- Lower | 35 | 35 | 265 | 25 |
M2- Upper | 30 | 30 | 270 | 20 |
M3- Lower | 35 | 35 | 275 | 25 |
M3- Upper | 30 | 30 | 280 | 20 |
Structural Element | OFS | ODS | EFS | ||||||
---|---|---|---|---|---|---|---|---|---|
Concrete [m3] | Rebar Steel [kg] | Wood Formwork [kg] | Concrete [m3] | Rebar Steel [kg] | Wood Formwork [kg] | Concrete [m3] | Rebar Steel [kg] | Wood Formwork [kg] | |
Retaining Walls | 317.11 | 9720 | 2380 | 317.11 | 9770 | 2380 | 317.11 | 9720 | 2380 |
Foundation Beam | 441.36 | 31,110 | 1540 | 473.47 | 50,920 | 1680 | 482.09 | 47,780 | 1660 |
Staircase and Ramps | 62.86 | 12,070 | 570 | 62.86 | 12,070 | 570 | 62.86 | 12,070 | 0570 |
Beams | 319.97 | 40,570 | 2670 | 257.24 | 19,420 | 2330 | 639.17 | 73,670 | 3680 |
Columns | 214.22 | 47,740 | 2280 | 120.61 | 31,680 | 1430 | 704.54 | 155,280 | 4080 |
Shear Wall | - | - | - | 205.24 | 27,480 | 2560 | - | - | - |
Slab | 387.82 | 33,440 | 5380 | 392.29 | 33,530 | 5440 | 342.45 | 33,240 | 4750 |
Total | 1743.34 | 174,650 | 14,830 | 1828.83 | 184,860 | 16,390 | 2548.21 | 331,770 | 17,130 |
Soil Activity | OFS | ODS | EFS |
---|---|---|---|
Excavation Volume [m3] | 7228.97 | 7228.97 | 7228.97 |
Unwanted material [m3] | 6017.83 | 6017.83 | 6017.83 |
Filling material [m3] | 769.78 | 737.67 | 729.05 |
Material | EF [kg CO2 eq./u] | Source | Commentary | ECF [MJ/u] | Source |
---|---|---|---|---|---|
Concrete [m3] | 252 | [41] | University of Bath Carbon and Energy Inventory f′c = 28 MPa | 3623.190 | [41] |
Rebar Steel [kg] | 1990 | [41] | University of Bath Carbon and Energy Inventory | 19,000.000 | [42] |
Wood Formwork [kg] | 613 | [20] | Study carried out at the University of La Coruña in MDP boards | 3297.160 | [20] |
Equipment and Machinery | Capacity | Efficiency [L/u] | Source |
---|---|---|---|
Dump Truck 6 × 4; 206 kW [km] | 10 [m3] | 0.765 | [43] |
Cargo Truck [km] | 50,000 [kg] | 0.60 | [43] |
Concrete Mixer Truck; 3 axis; 221 kW [km] | 8 [m3] | 0.77 | [43] |
Concrete Mixer Truck; 3 axis; 221 kW [h] | 0.03 [h/m3] | 5.21 | [20] |
Vibratory plate compactor 5 kW [h] | 0.53 [h/m3] | 1.10 | [20] |
Concrete vibrator (1.5″); 3 kW [h] | 0.40 [h/m3] | 1.03 | [20] |
Backhoe 0.2 m3; 45.6 kW [h] | 0.05 [h/m3] | 5.21 | [20] |
Front Loader 1.5–1.7 and D3; 59 kW [h] | 0.03 [h/m3] | 13.93 | [20] |
Concrete Pump 55.16 kW [h] | 0.03 [h/m3] | 15.00 | [20] |
Equipment | Potency | Source |
---|---|---|
Chainsaw [W] | 1200.00 | [44] |
Energy Source | EF [kg of CO2 eq./u] | ECF [MJ/u] | Source |
---|---|---|---|
Fuel (Diesel) [L] | 2.5 | 34.68 | [45] |
Electric Power [MWh] | 451 | 3600 | [46] |
Equipment and Machinery | EF [kg of CO2 eq/u] | ECF [MJ/u] |
---|---|---|
Dump Truck 6 × 4, 10 m3; 206 kW [km] | 1.9 | 26.54 |
Cargo Truck 50,000 kg [km] | 1.5 | 20.70 |
Concrete Mixer Truck; 3 axis; 8 m3; 221 kW [km] | 1.9 | 26.54 |
Concrete Mixer Truck; 3 axis; 221 kW [h] | 13.1 | 180.68 |
Vibratory plate compactor 5 kW [h] | 2.8 | 38.15 |
Concrete vibrator (1.5″); 3 kW [h] | 2.6 | 35.72 |
Backhoe 0.2 m3; 45.6 kW [h] | 13.1 | 180.68 |
Front Loader 1.5–1.7 and D3; 59 kW [h] | 35.1 | 483.09 |
Concrete Pump BSA 1000 1005 D3B C 55.16 kW [h] | 37.8 | 520.20 |
Dump Truck 6 × 4, 10 m3; 206 kW, [km] | 0.5 | 4.32 |
Transportation | Type of Transport | u | Loading Capacity | Required Quantity | No. Trips [u] | Distance [km] | Total Distance [km] |
---|---|---|---|---|---|---|---|
Concrete | Concrete Mixer Truck; 3 axis; 8 m3; 300 hp [km] | m3 | 8 | 1743.34 | 436 | 7.8 | 3400.8 |
Rebar Steel | Cargo Truck 5000 kg [km] | kg | 5000 | 174,650 | 70 | 6.2 | 434 |
Wood formwork | Cargo Truck 5000 kg [km] | kg | 5000 | 14,830 | 6 | 2.3 | 13.8 |
Unwanted material | Dump Truck 6 × 4 m, 10 m3; 280 hp [km] | m3 | 10 | 6017.83 | 1204 | 12.5 | 15,050 |
No. | Code | Activity | u | Quantity | Total Emission | Total Energy Consumption | ||
---|---|---|---|---|---|---|---|---|
[kg of CO2 eq./u] | [MJ/u] | [×10³ kg of CO2 eq] | [MJ] | |||||
1 | OFS-01-01 | Materials Manufacturing | ||||||
2 | OFS-01-01-01 | Ready-mix concrete manufacturing | m3 | 1743.34 | 252 | 3623.19 | 439.322 | 6,316,455.86 |
3 | OFS-01-01-02 | Rebar steel manufacturing | kg | 174,650 | 1990 | 19,000 | 347.557 | 3,318,383.44 |
4 | OFS-01-01-03 | Wood formwork manufacturing | kg | 14,830 | 613 | 3297.16 | 9.091 | 48,899.32 |
5 | OFS-01-02 | Transport of Materials | ||||||
6 | OFS-01-02-01 | Transport ready-mix concrete | km | 3400.8 | 1.9 | 26.54 | 6.554 | 90,272.39 |
7 | OFS-01-02-02 | Transport rebar steel | km | 434 | 1.5 | 20.7 | 0.652 | 8985.83 |
8 | OFS-01-02-03 | Transport wood formwork | km | 13.8 | 1.5 | 20.7 | 0.021 | 285.72 |
9 | OFS-01-03 | Construction | ||||||
10 | OFS-01-03-01 | Earth Moving | ||||||
11 | OFS-01-03-01-01 | Excavation | m3 | 7228.97 | 0.7 | 9.03 | 4.741 | 65,307.51 |
12 | OFS-01-03-01-02 | Eviction of unwanted material | m3 | 6017.83 | 4.8 | 66.39 | 29.003 | 399,494.08 |
13 | OFS-01-03-01-03 | Soil compaction | m3 | 769.78 | 1.5 | 20.22 | 1.13 | 15,563.67 |
14 | OFS-01-03-02 | Structure | ||||||
15 | OFS-01-03-02-01 | Retaining Walls | ||||||
16 | OFS-01-03-02-01-001 | Pouring concrete in retaining walls f′c = 280 kg/cm2, includes pump transport | m3 | 317.11 | 2.6 | 36.27 | 0.835 | 11,500.82 |
17 | OFS-01-03-02-01-002 | Reinforcing steel cutting fy = 4200 kg/cm2 | kg | 9720 | 1.1 | 8.64 | 0.011 | 84.02 |
18 | OFS-01-03-02-01-003 | Formwork wood cutting of retaining walls | kg | 2380 | 2.2 | 17.28 | 0.005 | 41.1 |
19 | OFS-01-03-02-02 | Foundation | ||||||
20 | OFS-01-03-02-02-001 | Pouring concrete in foundation beams f′c = 280 kg/cm2, includes pump transport | m3 | 441.36 | 2.5 | 33.94 | 1.088 | 14,981.44 |
21 | OFS-01-03-02-02-002 | Reinforcing steel cutting fy = 4200 kg/cm2 | kg | 31,110 | 1.6 | 12.96 | 0.05 | 403.14 |
22 | OFS-01-03-02-02-003 | Formwork wood cutting of foundation beams | kg | 1540 | 2.7 | 21.6 | 0.004 | 33.36 |
23 | OFS-01-03-02-03 | Staircase and Ramps | ||||||
24 | OFS-01-03-02-03-001 | Pouring concrete in staircase and ramps f′c = 280 kg/cm2, includes pump transport | m3 | 62.86 | 6.1 | 84.59 | 0.386 | 5317.65 |
25 | OFS-01-03-02-03-002 | Reinforcing steel cutting fy = 4200 kg/cm2 | kg | 12,070 | 1.1 | 8.64 | 0.013 | 104.28 |
26 | OFS-01-03-02-03-003 | Formwork wood cutting of staircase and ramps | kg | 570 | 2.2 | 17.28 | 0.001 | 9.93 |
27 | OFS-01-03-02-04 | Columns | ||||||
28 | OFS-01-03-02-04-001 | Column pouring concrete f′c = 280 kg/cm2, includes pump transport | m3 | 214.22 | 3.5 | 48.29 | 0.751 | 10,344.58 |
29 | OFS-01-03-02-04-002 | Reinforcing steel cutting fy = 4200 kg/cm2 | kg | 47,740 | 1.6 | 12.96 | 0.077 | 618.75 |
30 | OFS-01-03-02-04-003 | Formwork wood cutting of columns | kg | 2280 | 2.7 | 21.6 | 0.006 | 49.23 |
31 | OFS-01-03-02-05 | Beams | ||||||
32 | OFS-01-03-02-05-001 | Pouring concrete in beams f′c = 280 kg/cm2, includes pump transport | m3 | 319.97 | 3.1 | 43.31 | 1.006 | 13,856.79 |
33 | OFS-01-03-02-05-002 | Reinforcing steel cutting fy = 4200 kg/cm2 | kg | 40,570 | 1.6 | 12.96 | 0.066 | 525.82 |
34 | OFS-01-03-02-05-003 | Formwork wood cutting of beams | kg | 2670 | 2.7 | 21.6 | 0.007 | 57.73 |
35 | OFS-01-03-02-06 | Slabs | ||||||
36 | OFS-01-03-02-06-001 | Pouring concrete in slabs f′c = 280 kg/cm2, includes pump transport | m3 | 387.82 | 3 | 41.54 | 1.17 | 16,110.24 |
37 | OFS-01-03-02-06-002 | Reinforcing steel cutting fy = 4200 kg/cm2 | kg | 33,440 | 1.1 | 8.64 | 0.036 | 288.88 |
38 | OFS-01-03-02-06-003 | Formwork wood cutting of slabs | kg | 5380 | 2.2 | 17.28 | 0.012 | 92.99 |
Total: | 843.6 | 10,338,068.58 |
Author | Location | Embodied Carbon of Concrete Structures [kg of CO2 eq.] | ||
---|---|---|---|---|
Manufacture Phase | Transportation Phase | Construction Phase | ||
Moussavi and Akbarnezhad, 2015 [20] | USA | 548,000–847,000 | 37,000–58,000 | 50,000–66,000 |
Suzuki et al., 1995 [48] | Japan | 2,232,000–3,034,000 | - | - |
Cole, 1998 [17] | Canada | - | 33,000 | 29,000 |
Kua and Wong, 2012 [55] | Singapore | 871,000 | - | - |
This study | Ecuador | 796,000–1,313,000 | 7000–11,000 | 40,000–43,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohorquez, A.; Viteri, E.; Rivera, E.; Avila, C. Environmental Impact of Earthquake-Resistant Design: A Sustainable Approach to Structural Response in High Seismic Risk Regions. Buildings 2024, 14, 3821. https://doi.org/10.3390/buildings14123821
Bohorquez A, Viteri E, Rivera E, Avila C. Environmental Impact of Earthquake-Resistant Design: A Sustainable Approach to Structural Response in High Seismic Risk Regions. Buildings. 2024; 14(12):3821. https://doi.org/10.3390/buildings14123821
Chicago/Turabian StyleBohorquez, Alvaro, Esteban Viteri, Edgar Rivera, and Carlos Avila. 2024. "Environmental Impact of Earthquake-Resistant Design: A Sustainable Approach to Structural Response in High Seismic Risk Regions" Buildings 14, no. 12: 3821. https://doi.org/10.3390/buildings14123821
APA StyleBohorquez, A., Viteri, E., Rivera, E., & Avila, C. (2024). Environmental Impact of Earthquake-Resistant Design: A Sustainable Approach to Structural Response in High Seismic Risk Regions. Buildings, 14(12), 3821. https://doi.org/10.3390/buildings14123821