A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies
Abstract
:1. Introduction
2. Diverse Manifestations of Cardiovascular Diseases
2.1. Coronary Artery Disease (CAD)
2.2. Peripheral Arterial Disease (PAD)
2.3. Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE)
2.4. Cardiomyopathies
2.5. Cerebrovascular Diseases
2.6. Rheumatic Heart Disease (RHD)
2.7. Congenital Heart Defects (CHDs)
2.8. Myocardial Infarction (MI)
2.9. Cardiac Arrhythmias
3. Diagnosis of CVD Using Cardiac Biomarkers and Imaging Modalities
3.1. Cardiac Biomarkers
3.1.1. Cardiac Troponins
3.1.2. Creatine Kinase-MB (CK-MB)
3.1.3. B-Type Natriuretic Peptide (BNP)
3.1.4. N-Terminal Pro-BNP (NT-proBNP)
3.1.5. Mid-Regional Pro-Atrial Natriuretic Peptide (MR-proANP)
3.1.6. Mid-Regional Pro-Adrenomedullin (MR-proADM)
3.1.7. C-Reactive Protein (CRP)
3.1.8. Heart-Type Fatty Acid-Binding Protein (H-FABP)
3.1.9. Myeloperoxidase (MPO)
3.1.10. Myoglobin
3.1.11. Ischemia-Modified Albumin (IMA)
3.1.12. Galectin-3
3.1.13. Copeptin
3.1.14. Fibroblast Growth Factor 23 (FGF-23)
3.1.15. Growth Differentiation Factor-15 (GDF-15)
3.1.16. Soluble ST2 (sST2)
3.1.17. Endothelin-1 (ET-1)
3.1.18. Cardiac Myosin-Binding Protein-C (cMyBP-C)
3.1.19. Trimethylamine-N-Oxide (TMAO)
3.1.20. Adiponectin
3.1.21. Interleukin-6 (IL-6)
3.1.22. Tumor Necrosis Factor-Alpha (TNF-α)
3.1.23. MicroRNAs (miRNAs) as Cardiac Biomarkers
3.1.24. Homocysteine
3.1.25. Phospholipase A2 (PLA2)
3.1.26. Oxidized Low-Density Lipoprotein (oxLDL)
3.1.27. Lipoprotein (a) [Lp(a)]
3.1.28. Apolipoproteins (ApoA1:ApoB)
3.1.29. Oxylipins
3.2. Cardiac Imaging Modalities
3.2.1. Chest X-ray
3.2.2. Electrocardiogram (ECG)
3.2.3. Echocardiography/Ultrasound
3.2.4. Computed Tomography (CT) Scan
3.2.5. Positron Emission Tomography (PET)
3.2.6. Single-Photon Emission Computed Tomography (SPECT)
3.2.7. Magnetic Resonance Imaging (MRI)
4. Essential Medications for Treating CVDs
4.1. Statins
4.2. Anticoagulants
4.3. Antiplatelet Agents
4.4. ACE Inhibitors (Angiotensin-Converting Enzyme Inhibitors)
4.5. Angiotensin II Receptor Blockers (ARBs)
4.6. Antiarrhythmic Agents
4.6.1. Class I Agents (Sodium Channel Blockers)
4.6.2. Class II Agents (β-Blockers)
4.6.3. Class III Agents (Potassium Channel Blockers)
4.6.4. Class IV Agents (Calcium Channel Blockers)
4.7. Fibrates
4.8. Neprilysin Inhibitors
4.9. Aldosterone Antagonists
4.10. Diuretics
4.11. Nitrates
4.12. Sodium–Glucose Cotransporter-2 Inhibitors (SGLT2 Inhibitors)
4.13. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors
4.14. Direct Renin Inhibitors
4.15. Cholesterol Absorption Inhibitors
4.16. Antisense Oligonucleotides
4.17. Ivabradine
4.18. Ranolazine
5. Surgical Interventions for Severe CVD Conditions
5.1. Coronary Artery Bypass Grafting (CABG)
5.2. Percutaneous Coronary Intervention (PCI)
5.3. Heart Valve Repair or Replacement
5.4. Pacemaker and/or Implantable Cardioverter–Defibrillator (ICD) Insertion
5.5. Aortic Aneurysm Repair
5.6. Heart Transplant
5.7. Left Ventricular Assist Device (LVAD) Implantation
6. Side Effects Associated with Various CVD Chemical Drugs
7. Herbal Remedies for Cardiovascular Diseases
Different Plant Extracts and Their Bioactive Compounds Used in the Prevention and Treatment of CVDs
8. Future Directions
Medication Class | Examples | Primary Mechanism | Clinical Application | References |
---|---|---|---|---|
Statins | Atorvastatin Fluvastatin | Inhibit HMG-CoA reductase, reducing cholesterol production | Lowers LDL cholesterol, reduces the risk of heart attacks and strokes, and stabilizes atherosclerotic plaques | [158,159,160,161] |
Anticoagulants | Warfarin, Rivaroxaban, Apixaban | Inhibit the coagulation cascade, preventing blood clots | Prevents and treats conditions like atrial fibrillation, DVT, PE, and stroke | [162,163,164,165,166,167] |
Antiplatelet Agents | Aspirin, Clopidogrel, Ticagrelor | Prevent platelet aggregation, reducing blood clot formation | Manages acute coronary syndrome (ACS), prevents recurrent cardiovascular events, and maintains stent patency | [168,169,170,171,172] |
ACE Inhibitors | Lisinopril, Enalapril | Inhibit conversion of angiotensin I to angiotensin II, leading to vasodilation and reduced blood pressure | Lowers blood pressure, treats heart failure (HF), and prevents heart and vessel remodeling | [173,174,175,176] |
ARBs (Angiotensin II Receptor Blockers) | Losartan, Valsartan | Block angiotensin II receptors, preventing vasoconstriction | Treats hypertension, heart failure, and chronic kidney disease | [177,178,179,180] |
Antiarrhythmic Agents—Class I (Sodium Channel Blockers) | Quinidine, Procainamide, Flecainide | Block sodium channels, stabilizing cardiac cell membranes and reducing conduction speed | Treats atrial fibrillation and ventricular arrhythmias Reduce the frequency of arrhythmic events and prevent the reoccurrence of arrhythmias | [181,182,183,184,185,186] |
Antiarrhythmic Agents—Class II (β-blockers) | Metoprolol Propanolol | Block effects of adrenaline on the heart, reducing heart rate and blood pressure | Treats hypertension, angina, and arrhythmias, improves survival rates post-MI, prevents sudden cardiac death, manages HF symptoms | [187,188,189,190] |
Antiarrhythmic Agents—Class III (Potassium Channel Blockers) | Amiodarone Sotalol | Block potassium channels, prolonging the repolarization phase of the cardiac action potential | Treats atrial fibrillation and ventricular tachycardia Effective for a broad range of arrhythmias | [191,192,193,194,195] |
Antiarrhythmic Agents—Class IV (Calcium Channel Blockers) | Amlodipine, Verapamil, Diltiazem | Inhibit calcium ions from entering cardiac and smooth muscle cells, relaxing and widening blood vessels | Hypertension, angina, arrhythmias Improve myocardial oxygen delivery and control the ventricular rate in AF patients | [196,197,198,199,200,201] |
Fibrates | Fenofibrate, Gemfibrozil | Activate PPARs, regulating lipid metabolism, lowering triglycerides, and increasing HDL cholesterol | Treats dyslipidemia, particularly in patients with high triglycerides and low HDL cholesterol | [202,203,204,205] |
Neprilysin Inhibitors | Entresto (Sacubitril-Valsartan) | Inhibit neprilysin, enhancing natriuretic peptides and reducing angiotensin II effects | Synergistic effect of ARBs reduces hospitalization and mortality in HFrEF patients | [206,207,208,209,210] |
Aldosterone Antagonists | Spironolactone, Eplerenone | Block aldosterone effects, promoting sodium and water excretion | Treats heart failure and resistant hypertension, reduces myocardial fibrosis and ventricular remodeling, improves long-term cardiac function | [211,212,213,214] |
Diuretics | Furosemide, Hydrochlorothiazide | Increase urine production, reducing blood volume and pressure | Treats hypertension, heart failure, and symptoms like edema and pulmonary congestion | [215,216] |
Nitrates | Nitroglycerin, Isosorbide Dinitrate | Dilate blood vessels by releasing nitric oxide, improving blood flow to the heart and relieving angina | Manages angina and heart failure by reducing heart workload and increasing oxygen delivery | [217,218] |
Sodium–Glucose Cotransporter-2 Inhibitors (SGLT2) | Empagliflozin, Dapagliflozin | Inhibit SGLT2 in the kidneys, reducing glucose reabsorption, promoting diuresis, and alleviating heart failure | Diabetes, heart failure. Reduce HF hospitalizations, cardiovascular death, and all-cause mortality | [219,220,221] |
PCSK9 Inhibitors | Alirocumab, Evolocumab | Inhibit PCSK9, increasing LDL receptor availability, lowering LDL cholesterol levels. | Lowers LDL cholesterol and reduces cardiovascular events in patients not adequately controlled by statins | [222,223,224,225,226] |
Direct Renin Inhibitors | Aliskiren | Inhibit renin, preventing the formation of angiotensin I, reducing blood pressure and cardiac stress | Manages hypertension, particularly resistant cases | [227,228] |
Cholesterol Absorption Inhibitors | Ezetimibe | Block cholesterol absorption in the intestines | Lowers LDL cholesterol and is often used in combination with statins | [229,230] |
Antisense Oligonucleotides | Inclisiran | Reduces PCSK9 levels through RNA-based mechanisms | Enhances LDL cholesterol clearance, offering cardiovascular benefits | [231,232] |
Ivabradine | Ivabradine | Selectively lowers heart rate by inhibiting the If current in the sinoatrial node | Manages chronic heart failure, particularly in patients symptomatic despite beta-blocker therapy | [233,234] |
Ranolazine | Ranolazine | Inhibits the late sodium current, reducing intracellular calcium overload | Treats chronic angina by improving myocardial relaxation and reducing symptoms | [235,236] |
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thiriet, M. Cardiovascular Disease: An Introduction. Vasculopathies 2019, 8, 1–90. [Google Scholar] [CrossRef]
- Afjeh-Dana, E.; Naserzadeh, P.; Moradi, E.; Hosseini, N.; Seifalian, A.M.; Ashtari, B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev. Rep. 2022, 18, 2566–2592. [Google Scholar] [CrossRef] [PubMed]
- Flora, G.D.; Nayak, M.K. A brief review of cardiovascular diseases, Associated Risk factors and Current Treatment Regimes. Curr. Pharm. Des. 2019, 25, 4063–4084. [Google Scholar] [CrossRef] [PubMed]
- Gadó, K.; Szabo, A.; Markovics, D.; Virág, A. Most common cardiovascular diseases of the elderly—A review article. Dev. Health Sci. 2022, 4, 27–32. [Google Scholar] [CrossRef]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic Status and Cardiovascular Outcomes: Challenges and Interventions. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef]
- Ghodeshwar, G.K.; Dube, A.; Khobragade, D. Impact of Lifestyle Modifications on Cardiovascular Health: A Narrative Review. Cureus 2023, 15, e42616. [Google Scholar] [CrossRef] [PubMed]
- Pallazola, V.A.; Davis, D.M.; Whelton, S.P.; Cardoso, R.; Latina, J.M.; Michos, E.D.; Sarkar, S.; Blumenthal, R.S.; Arnett, D.K.; Stone, N.J.; et al. A Clinician’s Guide to Healthy Eating for Cardiovascular Disease Prevention. Mayo Clin. Proc. Innov. Qual. Outcomes 2019, 3, 251–267. [Google Scholar] [CrossRef]
- Diab, A.; Dastmalchi, L.N.; Gulati, M.; Michos, E.D. A Heart-Healthy Diet for Cardiovascular Disease Prevention: Where Are We Now? Vasc. Health Risk Manag. 2023, 19, 237–253. [Google Scholar] [CrossRef]
- Santos, L. The impact of nutrition and lifestyle modification on health. Eur. J. Intern. Med. 2022, 97, 18–25. [Google Scholar] [CrossRef]
- Jan, B.; Dar, M.I.; Choudhary, B.; Basist, P.; Khan, R.; Alhalmi, A. Cardiovascular Diseases Among Indian Older Adults: A Comprehensive Review. Cardiovasc. Ther. 2024, 2024, 6894693. [Google Scholar] [CrossRef]
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell. Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A. Coronary artery disease. Clin. J. Am. Soc. Nephrol. 2007, 2, 611–616. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Luo, J.; Lv, M.; Li, Q.; Ke, W.; Niu, X.; Zhang, Z. Characteristics and evaluation of atherosclerotic plaques: An overview of state-of-the-art techniques. Front. Neurol. 2023, 14, 1159288. [Google Scholar] [CrossRef]
- Malekmohammad, K.; Bezsonov, E.E.; Rafieian-Kopaei, M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front. Cardiovasc. Med. 2021, 8, 707529. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, J.V.; Albayati, M.A.; Shearman, C.P.; Jude, E.B. Peripheral arterial disease. Endocrinol. Metab. Clin. 2014, 43, 149–166. [Google Scholar] [CrossRef]
- Tran, B. Assessment and management of peripheral arterial disease: What every cardiologist should know. Heart 2021, 107, 1835–1843. [Google Scholar] [CrossRef]
- Kesieme, E.; Kesieme, C.; Jebbin, N.; Irekpita, E.; Dongo, A. Deep vein thrombosis: A clinical review. J. Blood Med. 2011, 2, 59–69. [Google Scholar] [CrossRef]
- Di Nisio, M.; van Es, N.; Büller, H.R. Deep vein thrombosis and pulmonary embolism. Lancet 2016, 388, 3060–3073. [Google Scholar] [CrossRef]
- Braunwald, E. Cardiomyopathies: An overview. Circ. Res. 2017, 121, 711–721. [Google Scholar] [CrossRef]
- Ciarambino, T.; Menna, G.; Sansone, G.; Giordano, M. Cardiomyopathies: An Overview. Int. J. Mol. Sci. 2021, 22, 7722. [Google Scholar] [CrossRef]
- Kuriakose, D.; Xiao, Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef] [PubMed]
- Auala, T.; Zavale, B.G.; Mbakwem, A.Ç.; Mocumbi, A.O. Acute Rheumatic Fever and Rheumatic Heart Disease: Highlighting the Role of Group A Streptococcus in the Global Burden of Cardiovascular Disease. Pathogens 2022, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Dooley, L.M.; Ahmad, T.B.; Pandey, M.; Good, M.F.; Kotiw, M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun. Rev. 2021, 20, 102740. [Google Scholar] [CrossRef] [PubMed]
- Houyel, L.; Meilhac, S.M. Heart development and congenital structural heart defects. Annu. Rev. Genom. Hum. Genet. 2021, 22, 257–284. [Google Scholar] [CrossRef] [PubMed]
- Suluba, E.; Shuwei, L.; Xia, Q.; Mwanga, A. Congenital heart diseases: Genetics, non-inherited risk factors, and signaling pathways. Egypt. J. Med. Hum. Genet. 2020, 21, 11. [Google Scholar] [CrossRef]
- Saremi, F. Cardiac Shunts: ASD, VSD, PDA. In Cardiac CT and MR for Adult Congenital Heart Disease; Saremi, F., Ed.; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Wilson, R.; Ross, O.; Griksaitis, M.J. Tetralogy of Fallot. BJA Educ. 2019, 19, 362–369. [Google Scholar] [CrossRef]
- Jivanji, S.G.M.; Duong, P.; Kutty, R.; Qureshi, S.A. Coarctation of the Aorta. In Pediatric Cardiology; Abdulla, R., Qureshi, S.A., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Singh, Y. Diagnosis and management of critical congenital heart defects in infants. Paediatr. Child Health 2022, 32, 332–338. [Google Scholar] [CrossRef]
- Palasubramaniam, J.; Wang, X.; Peter, K. Myocardial infarction—From atherosclerosis to thrombosis: Uncovering new diagnostic and therapeutic approaches. Arterioscler. Thromb. Vasc. Biol. 2019, 39, e176–e185. [Google Scholar] [CrossRef]
- Khan, I.A.; Karim, H.M.R.; Panda, C.K.; Ahmed, G.; Nayak, S. Atypical Presentations of Myocardial Infarction: A Systematic Review of Case Reports. Cureus 2023, 15, e35492. [Google Scholar] [CrossRef]
- Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet 2017, 389, 197–210. [Google Scholar] [CrossRef]
- Saito, Y.; Oyama, K.; Tsujita, K.; Yasuda, S.; Kobayashi, Y. Treatment strategies of acute myocardial infarction: Updates on revascularization, pharmacological therapy, and beyond. J. Cardiol. 2023, 81, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Gaztañaga, L.; Marchlinski, F.E.; Betensky, B.P. Mechanisms of cardiac arrhythmias. Rev. Española Cardiol. Engl. Ed. 2012, 65, 174–185. [Google Scholar] [CrossRef]
- Fu, D.G. Cardiac arrhythmias: Diagnosis, symptoms, and treatments. Cell Biochem. Biophys. 2015, 73, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.H.; Dev, S.; Kumari, A.; Kanwal, K.; Jadav, D.N.; Rasool, S.; Tayyab Saleem, M.; Bhagat, R.; Prachi, F.; Puri, P.; et al. Holistic Approaches to Arrhythmia Management: Combining Medication, Ablation, and Device Interventions. Cureus. 2023, 15, e45958. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.C.; Todd, D.M. Modern management of arrhythmias. Postgrad. Med. J. 2006, 82, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Jackson, P.G.; Makan, J. Cardiac troponins. J. Clin. Pathol. 2004, 57, 1025–1026. [Google Scholar] [CrossRef]
- Daubert, M.A.; Jeremias, A. The utility of troponin measurement to detect myocardial infarction: Review of the current findings. Vasc. Health Risk Manag. 2010, 6, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, V.S.; Jarolim, P. How to interpret elevated cardiac troponin levels. Circulation 2011, 124, 2350–2354. [Google Scholar] [CrossRef]
- Green, S.F. CK-MB Measurements by Immunoassay. In Cardiac Markers. Pathology and Laboratory Medicine; Wu, A.H.B., Ed.; Humana Press: Totowa, NJ, USA, 1998. [Google Scholar] [CrossRef]
- Christenson, R.H.; Vaidya, H.; Landt, Y.; Bauer, R.S.; Green, S.F.; A Apple, F.; Jacob, A.; Magneson, G.R.; Nag, S.; Wu, A.H.; et al. Standardization of Creatine Kinase-MB (CK-MB) Mass Assays: The Use of Recombinant CK-MB as a Reference Material. Clin. Chem. 1999, 45, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Ugur, K.; Aydin, S.; Sahin, İ.; Yardim, M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- B-Type Natriuretic Peptide (BNP). Dictionary of Toxicology; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Okamoto, R.; Ali, Y.; Hashizume, R.; Suzuki, N.; Ito, M. BNP as a Major Player in the Heart-Kidney Connection. Int. J. Mol. Sci. 2019, 20, 3581. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.; Ludman, A.J.; Dworzynski, K.; Al-Mohammad, A.; Cowie, M.R.; McMurray, J.J.; Mant, J. The diagnostic accuracy of the natriuretic peptides in heart failure: Systematic review and diagnostic meta-analysis in the acute care setting. BMJ 2015, 350, h910. [Google Scholar] [CrossRef]
- Maries, L.; Manitiu, I. Diagnostic and prognostic values of B-type natriuretic peptides (BNP) and N-terminal fragment brain natriuretic peptides (NT-pro-BNP). Cardiovasc. J. Afr. 2013, 24, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Brunner-La Rocca, H.P.; Bektas, S. Biomarker guided therapy in chronic heart failure. Card. Fail. Rev. 2015, 1, 96. [Google Scholar] [CrossRef]
- Shimohata, H.; Usui, J.; Tawara-Iida, T.; Ebihara, I.; Ishizu, T.; Maeda, Y.; Kobayashi, H.; Numajiri, D.; Kaneshige, A.; Sega, M.; et al. NT-pro BNP level at dialysis initiation is a useful biomarker for predicting hospitalization for ischemic heart disease. Clin. Exp. Nephrol. 2024, 28, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, W.; Diedrich, C.; Hamza, T.H.; Meyer, M.; Eissing, T.; Breitenstein, S.; Rossano, J.W.; Lipshultz, S.E. NT-proBNP for Predicting All-Cause Death and Heart Transplant in Children and Adults with Heart Failure. Pediatr. Cardiol. 2024, 35, 1–10. [Google Scholar] [CrossRef]
- Yagmur, E.; Sckaer, J.H.; Koek, G.H.; Weiskirchen, R.; Trautwein, C.; Koch, A.; Tacke, F. Elevated MR-proANP plasma concentrations are associated with sepsis and predict mortality in critically ill patients. J. Transl. Med. 2019, 17, 415. [Google Scholar] [CrossRef]
- Lainscak, M.; von Haehling, S.; Anker, S.D. Natriuretic peptides and other biomarkers in chronic heart failure: From BNP, NT-proBNP, and MR-proANP to routine biochemical markers. Int. J. Cardiol. 2009, 132, 303–311. [Google Scholar] [CrossRef]
- Tzikas, S.; Keller, T.; Ojeda, F.M.; Zeller, T.; Wild, P.S.; Lubos, E.; Kunde, J.; Baldus, S.; Bickel, C.; Lackner, K.J.; et al. MR-proANP and MR-proADM for risk stratification of patients with acute chest pain. Heart 2013, 99, 388–395. [Google Scholar] [CrossRef]
- Potocki, M.; Ziller, R.; Mueller, C. Mid-Regional Pro-Adrenomedullin in Acute Heart Failure: A Better Biomarker or Just Another Biomarker? Curr. Heart Fail. Rep. 2012, 9, 244–251. [Google Scholar] [CrossRef]
- Önal, U.; Valenzuela-Sánchez, F.; Vandana, K.E.; Rello, J. Mid-regional pro-adrenomedullin (MR-proADM) as a biomarker for sepsis and septic shock: Narrative review. Healthcare 2018, 6, 110. [Google Scholar] [CrossRef]
- Huang, Z.; Zhong, J.; Ling, Y.; Zhang, Y.; Lin, W.; Tang, L.; Liu, J.; Li, S. Diagnostic value of novel biomarkers for heart failure. Herz 2020, 45, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.M.; Chen, L.; Deng, J.Q.; Li, Y.S.; Chen, Z. Study of the association of the novel cardiac biomarkers copeptin, MR-proANP, and MR-proADM with coronary artery disease and risk of type 2 diabetes mellitus in a Chinese Han population: A case-control study. Int. J. Clin. Exp. Med. 2017, 10, 5390–5397. [Google Scholar]
- Genest, J. C-reactive protein: Risk factor, biomarker and/or therapeutic target? Can. J. Cardiol. 2010, 26, 41A–44A. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; de Lacerda, A.P. High-sensitivity C-reactive protein as a biomarker of risk in coronary artery disease. Rev. Port. Cardiol. Engl. Ed. 2012, 31, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.K.; Singh, H.V.; Raizada, A.; Singh, S.K. C-reactive protein, inflammation and coronary heart disease. Egypt. Heart J. 2015, 67, 89–97. [Google Scholar] [CrossRef]
- Ye, X.D.; He, Y.; Wang, S.; Wong, G.T.; Irwin, M.G.; Xia, Z. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol. Sin. 2018, 39, 1155–1163. [Google Scholar] [CrossRef]
- Rezar, R.; Jirak, P.; Gschwandtner, M.; Derler, R.; Felder, T.K.; Haslinger, M.; Kopp, K.; Seelmaier, C.; Granitz, C.; Hoppe, U.C.; et al. Heart-type fatty acid-binding protein (H-FABP) and its role as a biomarker in heart failure: What do we know so far? J. Clin. Med. 2020, 9, 164. [Google Scholar] [CrossRef]
- Azzazy, H.M.; Pelsers, M.M.; Christenson, R.H. Unbound Free Fatty Acids and Heart-Type Fatty Acid–Binding Protein: Diagnostic Assays and Clinical Applications. Clin. Chem. 2006, 52, 19–29. [Google Scholar] [CrossRef]
- Arnhold, J. The dual role of myeloperoxidase in immune response. Int. J. Mol. Sci. 2020, 21, 8057. [Google Scholar] [CrossRef]
- Davies, M.J.; Hawkins, C.L. The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid. Redox Signal. 2020, 32, 957–981. [Google Scholar] [CrossRef] [PubMed]
- Schindhelm, R.K.; van der Zwan, L.P.; Teerlink, T.; Scheffer, P.G. Myeloperoxidase: A useful biomarker for cardiovascular disease risk stratification? Clin. Chem. 2009, 55, 1462–1470. [Google Scholar] [CrossRef]
- Quinn, M.; Zhang, R.Y.; Bello, I.; Rye, K.A.; Thomas, S.R. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants 2024, 13, 788. [Google Scholar] [CrossRef] [PubMed]
- Kontos, M.C.; Garg, R.; Anderson, F.P.; Roberts, C.S.; Ornato, J.P.; Tatum, J.L.; Jesse, R.L. Ability of myoglobin to predict mortality in patients admitted for exclusion of myocardial infarction. Am. J. Emerg. Med. 2007, 25, 873–879. [Google Scholar] [CrossRef]
- McCord, J.; Nowak, R.M.; Hudson, M.P.; McCullough, P.A.; Tomlanovich, M.C.; Jacobsen, G.; Tokarski, G.; Khoury, N.; Weaver, W. The prognostic significance of serial myoglobin, troponin I, and creatine kinase–MB measurements in patients evaluated in the emergency department for acute coronary syndrome. Ann. Emerg. Med. 2003, 42, 343–350. [Google Scholar] [CrossRef]
- Yu, J.S.; Chen, R.D.; Zeng, L.C.; Yang, H.K.; Li, H. Myoglobin offers higher accuracy than other cardiac-specific biomarkers for the prognosis of COVID-19. Front. Cardiovasc. Med. 2021, 8, 686328. [Google Scholar] [CrossRef] [PubMed]
- Chek, J.; Dusek, J.; Stasek, J.; Vojacek, J.; Bis, J.; Ulrychova, M.; Tichy, M.; Tomko, T.; Bukac, J. Role of ischemia-modified albumin in estimating the extent and scope of cardiac ischemia in patients with ST elevation myocardial infarction. Heart Vessel. 2011, 26, 622–627. [Google Scholar] [CrossRef]
- Jawade, P.; Khillare, K.M.; Mangudkar, S.; Palange, A.; Dhadwad, J.; Deshmukh, M. A Comparative Study of Ischemia-Modified Albumin: A Promising Biomarker for Early Detection of Acute Coronary Syndrome (ACS). Cureus 2023, 15, e44357. [Google Scholar] [CrossRef]
- Reddy, C.B.; Cyriac, C.; Desle, H.B. Role of “Ischemia Modified Albumin” (IMA) in acute coronary syndromes. Indian Heart J. 2014, 66, 656–662. [Google Scholar] [CrossRef]
- Zhong, X.; Qian, X.; Chen, G.; Song, X. The role of galectin-3 in heart failure and cardiovascular disease. Clin. Exp. Pharmacol. Physiol. 2019, 46, 197–203. [Google Scholar] [CrossRef]
- Hara, A.; Niwa, M.; Kanayama, T.; Noguchi, K.; Niwa, A.; Matsuo, M.; Kuroda, T.; Hatano, Y.; Okada, H.; Tomita, H. Galectin-3: A potential prognostic and diagnostic marker for heart disease and detection of early stage pathology. Biomolecules 2020, 10, 1277. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Hou, W.; Zhang, Y.; Chen, Y.; He, B. Prognostic value of serum galectin-3 in patients with heart failure: A meta-analysis. Int. J. Cardiol. 2015, 182, 168–170. [Google Scholar] [CrossRef]
- Schindler, E.I.; Szymanski, J.J.; Hock, K.G.; Geltman, E.M.; Scott, M.G. Short- and long-term biologic variability of galectin-3 and other cardiac biomarkers in patients with Stable heart failure and healthy adults. Clin. Chem. 2016, 62, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G. Copeptin: A biomarker of cardiovascular and renal function. Congest. Heart Fail. 2010, 16, S37–S44. [Google Scholar] [CrossRef]
- Oraby, M.I.; Soliman, R.H.; Elkareem, R.M.A.; Mohammed, A.I. Copeptin: A potential blood biomarker for acute ischemic stroke. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 140. [Google Scholar] [CrossRef]
- Nickel, C.H.; Bingisser, R.; Morgenthaler, N.G. The role of copeptin as a diagnostic and prognostic biomarker for risk stratification in the emergency department. BMC Med. 2012, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Courbebaisse, M.; Lanske, B. Biology of Fibroblast Growth Factor 23: From Physiology to Pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a031260. [Google Scholar] [CrossRef]
- Kestenbaum, B.; Sachs, M.C.; Hoofnagle, A.N.; Siscovick, D.S.; Ix, J.H.; Robinson-Cohen, C.; Lima, J.A.; Polak, J.F.; Blondon, M.; Ruzinski, J.; et al. Fibroblast growth factor-23 and cardiovascular disease in the general population: The Multi-Ethnic Study of Atherosclerosis. Circ. Heart Fail. 2014, 7, 409–417. [Google Scholar] [CrossRef]
- Orlando, M. Gutiérrez, Fibroblast growth factor 23 and heart failure: The plot thickens. Nephrol. Dial. Transplant. 2016, 31, 688–690. [Google Scholar] [CrossRef]
- Sawalha, K.; Norgard, N.B.; Drees, B.M.; López-Candales, A. Growth Differentiation Factor 15 (GDF-15), a New Biomarker in Heart Failure Management. Curr. Heart Fail. Rep. 2023, 20, 287–299. [Google Scholar] [CrossRef] [PubMed]
- di Candia, A.M.; de Avila, D.X.; Moreira, G.R.; Villacorta, H.; Maisel, A.S. Growth differentiation factor-15, a novel systemic biomarker of oxidative stress, inflammation, and cellular aging: Potential role in cardiovascular diseases. Am. Heart J. Plus Cardiol. Res. Pract. 2021, 9, 100046. [Google Scholar] [CrossRef] [PubMed]
- Wollert, K.C.; Kempf, T. Growth differentiation factor 15 in heart failure: An update. Curr. Heart Fail. Rep. 2012, 9, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Bayes-Genis, A.; Lupón, J. Biomarkers in Heart Failure: ST2. In Cardiac Biomarkers; Maisel, A., Jaffe, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Mallick, A.; Januzzi, J.L. ST2 in Heart Failure: Where Does This New Marker Fit in? Curr. Emerg. Hosp. Med. Rep. 2015, 3, 55–61. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Kostov, K. The Causal Relationship between Endothelin-1 and Hypertension: Focusing on Endothelial Dysfunction, Arterial Stiffness, Vascular Remodeling, and Blood Pressure Regulation. Life 2021, 11, 986. [Google Scholar] [CrossRef] [PubMed]
- Govindan, S.; McElligott, A.; Muthusamy, S.; Nair, N.; Barefield, D.; Martin, J.L.; Gongora, E.; Greis, K.D.; Luther, P.K.; Winegrad, S.; et al. Cardiac myosin binding protein-C is a potential diagnostic biomarker for myocardial infarction. J. Mol. Cell. Cardiol. 2012, 52, 154–164. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, M.; Liu, L.; Yu, Z.; Lu, X.; Zhang, H. Trimethylamine N-oxide and cardiovascular outcomes in patients with chronic heart failure after myocardial infarction. ESC Heart Fail. 2020, 7, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Giannessi, D.; Maltinti, M.; Del Ry, S. Adiponectin circulating levels: A new emerging biomarker of cardiovascular risk. Pharmacol. Res. 2007, 56, 459–467. [Google Scholar] [CrossRef]
- Ebrahimi-Mamaeghani, M.; Mohammadi, S.; Arefhosseini, S.R.; Fallah, P.; Bazi, Z. Adiponectin as a potential biomarker of vascular disease. Vasc. Health Risk Manag. 2015, 11, 55–70. [Google Scholar]
- Anderson, D.R.; Poterucha, J.T.; Mikuls, T.R.; Duryee, M.J.; Garvin, R.P.; Klassen, L.W.; Shurmur, S.W.; Thiele, G.M. IL-6 and its receptors in coronary artery disease and acute myocardial infarction. Cytokine 2013, 62, 395–400. [Google Scholar] [CrossRef]
- Reiss, A.B.; Siegart, N.M.; De Leon, J. Interleukin-6 in atherosclerosis: Atherogenic or atheroprotective? Clin. Lipidol. 2017, 12, 14–23. [Google Scholar] [CrossRef]
- Urschel, K.; Cicha, I. TNF-α in the cardiovascular system: From physiology to therapy. Int. J. Interferon Cytokine Mediat. Res. 2015, 7, 9–25. [Google Scholar]
- Rolski, F.; Tkacz, K.; Węglarczyk, K.; Kwiatkowski, G.; Pelczar, P.; Jaźwa-Kusior, A.; Bar, A.; Kuster, G.M.; Chłopicki, S.; Siedlar, M.; et al. TNF-α protects from exacerbated myocarditis and cardiac death by suppressing expansion of activated heart-reactive CD4+ T cells. Cardiovasc. Res. 2024, 120, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Romaine, S.P.; Tomaszewski, M.; Condorelli, G.; Samani, N.J. MicroRNAs in cardiovascular disease: An introduction for clinicians. Heart 2015, 101, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Searles, C.D. MicroRNAs and cardiovascular disease risk. Curr. Cardiol. Rep. 2024, 26, 51–60. [Google Scholar] [CrossRef]
- Zhou, S.S.; Jin, J.P.; Wang, J.Q.; Zhang, Z.G.; Freedman, J.H.; Zheng, Y.; Cai, L. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 2018, 39, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- De Bree, A.; Verschuren, W.M.; Kromhout, D.; Mennen, L.I.; Blom, H.J. Homocysteine and coronary heart disease: The importance of a distinction between low and high risk subjects. Int. J. Epidemiol. 2002, 31, 1268–1272. [Google Scholar] [CrossRef]
- Toth, P.P.; McCullough, P.A.; Wegner, M.S.; Colley, K.J. Lipoprotein-associated phospholipase A2: Role in atherosclerosis and utility as a cardiovascular biomarker. Expert Rev. Cardiovasc. Ther. 2010, 8, 425–438. [Google Scholar] [CrossRef]
- Chen, C.; Khismatullin, D.B. Oxidized low-density lipoprotein contributes to atherogenesis via co-activation of macrophages and mast cells. PLoS ONE 2015, 10, e0123088. [Google Scholar] [CrossRef]
- Wilson, D.P.; Jacobson, T.A.; Jones, P.H.; Koschinsky, M.L.; McNeal, C.J.; Nordestgaard, B.G.; Orringer, C.E. Use of Lipoprotein (a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. J. Clin. Lipidol. 2019, 13, 374–392. [Google Scholar] [CrossRef]
- Pan, L.; Lu, G.; Chen, Z. Combined use of apolipoprotein B/apolipoprotein A1 ratio and non-high-density lipoprotein cholesterol before routine clinical lipid measurement in predicting coronary heart disease. Coron. Artery Dis. 2014, 25, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tang, X.; Wang, Y.; Chen, W.; Xue, Y.; Cao, H.; Zhang, B.; Pan, J.; Zhou, Q.; Wang, D.; et al. Serum Oxylipin Profiles Identify Potential Biomarkers in Patients with Acute Aortic Dissection. Metabolites 2022, 12, 587. [Google Scholar] [CrossRef] [PubMed]
- Nayeem, M.A. Role of oxylipins in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1142–1154. [Google Scholar] [CrossRef] [PubMed]
- Broder, J. Imaging the Chest: The Chest Radiograph. Diagn. Imaging Emerg. Physician 2011, 185–296. [Google Scholar] [CrossRef]
- Madani, A.; Moradi, M.; Karargyris, A.; Syeda-Mahmood, T. Chest X-ray generation and data augmentation for cardiovascular abnormality classification. In Medical Imaging 2018: Image Processing; SPIE: Washington, DC, USA, 2018; Volume 10574, pp. 415–420. [Google Scholar]
- Rafie, N.; Kashou, A.H.; Noseworthy, P.A. ECG interpretation: Clinical relevance, challenges, and advances. Hearts 2021, 2, 505–513. [Google Scholar] [CrossRef]
- Gosse, P.; Jan, E.; Coulon, P.; Cremer, A.; Papaioannou, G.; Yeim, S. ECG detection of left ventricular hypertrophy: The simpler, the better? J. Hypertens. 2012, 30, 990–996. [Google Scholar] [CrossRef]
- Katal, N.; Gupta, S.; Verma, P.; Sharma, B. Deep-Learning-Based Arrhythmia Detection Using ECG Signals: A Comparative Study and Performance Evaluation. Diagnostics 2023, 13, 3605. [Google Scholar] [CrossRef]
- Coppola, G.; Carità, P.; Corrado, E.; Borrelli, A.; Rotolo, A.; Guglielmo, M.; Nugara, C.; Ajello, L.; Santomauro, M.; Novo, S. ST segment elevations: Always a marker of acute myocardial infarction? Indian Heart J. 2013, 65, 412–423. [Google Scholar] [CrossRef]
- Diercks, D.B.; Shumaik, G.M.; Harrigan, R.A.; Brady, W.J.; Chan, T.C. Electrocardiographic manifestations: Electrolyte abnormalities. J. Emerg. Med. 2004, 27, 153–160. [Google Scholar] [CrossRef]
- Vogler, J.; Breithardt, G.; Eckardt, L. Bradyarrhythmias and conduction blocks. Rev. Española Cardiol. Engl. Ed. 2012, 65, 656–667. [Google Scholar] [CrossRef]
- Mulpuru, S.K.; Madhavan, M.; McLeod, C.J.; Cha, Y.M.; Friedman, P.A. Cardiac pacemakers: Function, troubleshooting, and management: Part 1 of a 2-part series. J. Am. Coll. Cardiol. 2017, 69, 189–210. [Google Scholar] [CrossRef]
- Uccello, G.; Bonacchi, G.; Rossi, V.A.; Montrasio, G.; Beltrami, M. Myocarditis and Chronic Inflammatory Cardiomyopathy, from Acute Inflammation to Chronic Inflammatory Damage: An Update on Pathophysiology and Diagnosis. J. Clin. Med. 2023, 13, 150. [Google Scholar] [CrossRef]
- Madalina, G. The general principles of echocardiography. In The EAE Textbook of Echocardiography, 1st ed.; Galiuto, L., Madalina, G., Eds.; ESC Publications: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Citro, R.; Bursi, F.; Bellino, M.; Picano, E. The Role of Stress Echocardiography in Valvular Heart Disease. Curr. Cardiol. Rep. 2022, 24, 1477–1485. [Google Scholar] [CrossRef]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F., Jr.; Otto, C.M. Recommendations on the echocardiographic assessment of aortic valve stenosis: A focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J.-Cardiovasc. Imaging 2017, 18, 254–275. [Google Scholar] [CrossRef]
- Grayburn, P.A.; Thomas, J.D. Basic principles of the echocardiographic evaluation of mitral regurgitation. Cardiovasc. Imaging 2021, 14, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Pacileo, G.; Di Salvo, G.; Limongelli, G.; Miele, T.; Calabrò, R. Echocardiography in congenital heart disease: Usefulness, limits and new techniques. J. Cardiovasc. Med. 2007, 8, 17–22. [Google Scholar] [CrossRef]
- Galzerano, D.; Pergola, V.; Eltayeb, A.; Ludovica, F.; Arbili, L.; Tashkandi, L.; Michele, S.D.; Barchitta, A.; Parato, M.V.; Salvo, G.D. Echocardiography in Simple Congenital Heart Diseases: Guiding Adult Patient Management. J. Cardiovasc. Echogr. 2023, 33, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Slivnick, J.A.; Gessert, N.T.; Cotella, J.I.; Oliveira, L.; Pezzotti, N.; Eslami, P.; Sadeghi, A.; Wehle, S.; Prabhu, D.; Waechter-Stehle, I.; et al. Echocardiographic Detection of Regional Wall Motion Abnormalities Using Artificial Intelligence Compared to Human Readers. J. Am. Soc. Echocardiogr. 2024, 37, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Steeds, R.P.; Wheeler, R.; Bhattacharyya, S.; Reiken, J.; Nihoyannopoulos, P.; Senior, R.; Monaghan, M.J.; Sharma, V. Stress echocardiography in coronary artery disease: A practical guideline from the British Society of Echocardiography. Echo Res. Pract. 2019, 6, G17–G33. [Google Scholar] [CrossRef]
- Lange, A.; Palka, P.; Burstow, D.J.; Godman, M.J. Three-dimensional echocardiography: Historical development and current applications. J. Am. Soc. Echocardiogr. 2001, 14, 403–412. [Google Scholar] [CrossRef]
- Zhao, H.; O’Quinn, R.; Ambrose, M.; Jagasia, D.; Ky, B.; Wald, J.; Ferrari, V.A.; Kirkpatrick, J.N.; Han, Y. Contrast-enhanced echocardiography has the greatest impact in patients with reduced ejection fractions. J. Am. Soc. Echocardiogr. 2018, 31, 289–296. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, I.; Ullah, N.; Shah, S.S.U.D.; Khan, B.A.; Zahoor, M.; Ullah, R.; Khan, F.A.; Sultan, M.A. Modern diagnostic imaging technique applications and risk factors in the medical field: A review. BioMed Res. Int. 2022, 2022, 5164970. [Google Scholar] [CrossRef] [PubMed]
- Saengsin, K.; Pickard, S.S.; Prakash, A. Utility of cardiac CT in infants with congenital heart disease: Diagnostic performance and impact on management. J. Cardiovasc. Comput. Tomogr. 2022, 16, 345–349. [Google Scholar] [CrossRef]
- Lopez-Mattei, J.C.; Yang, E.H.; Ferencik, M.; Baldassarre, L.A.; Dent, S.; Budoff, M.J. Cardiac computed tomography in cardio-oncology: JACC: CardioOncology primer. Cardio Oncol. 2021, 3, 635–649. [Google Scholar]
- Golla, A.K.; Tönnes, C.; Russ, T.; Bauer, D.F.; Froelich, M.F.; Diehl, S.J.; Schoenberg, S.O.; Keese, M.; Schad, L.R.; Zöllner, F.G.; et al. Automated screening for abdominal aortic aneurysm in CT scans under clinical conditions using deep learning. Diagnostics 2021, 11, 2131. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Lakshmanan, S.; Toth, P.P.; Hecht, H.S.; Shaw, L.J.; Maron, D.J.; Michos, E.D.; Williams, K.A.; Nasir, K.; Choi, A.D.; et al. Cardiac CT angiography in current practice: An American society for preventive cardiology clinical practice statement. Am. J. Prev. Cardiol. 2022, 9, 100318. [Google Scholar] [CrossRef]
- Adelhoefer, S.; Uddin, S.M.I.; Osei, A.D.; Obisesan, O.H.; Blaha, M.J.; Dzaye, O. Coronary Artery Calcium Scoring: New Insights into Clinical Interpretation-Lessons from the CAC Consortium. Radiol. Cardiothorac. Imaging 2020, 2, e200281. [Google Scholar] [CrossRef]
- Zantonelli, G.; Cozzi, D.; Bindi, A.; Cavigli, E.; Moroni, C.; Luvarà, S.; Grazzini, G.; Danti, G.; Granata, V.; Miele, V. Acute pulmonary embolism: Prognostic role of computed tomography pulmonary angiography (CTPA). Tomography 2022, 8, 529–539. [Google Scholar] [CrossRef]
- Rajiah, P.; Cummings, K.W.; Williamson, E.; Young, P.M. CT Fractional Flow Reserve: A Practical Guide to Application, Interpretation, and Problem Solving. Radiographics 2022, 42, 340–358. [Google Scholar] [CrossRef]
- Jin, K.N.; De Cecco, C.N.; Caruso, D.; Tesche, C.; Spandorfer, A.; Varga-Szemes, A.; Schoepf, U.J. Myocardial perfusion imaging with dual energy CT. Eur. J. Radiol. 2016, 85, 1914–1921. [Google Scholar] [CrossRef]
- Soares, J., Jr. Cardiac PET Procedure: Perfusion, Coronary Flow, Viability, Inflammation, and PET/MR. In Nuclear Cardiology; Mesquita, C.T., Rezende, M.F., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Kandolin, R.M.; Wiefels, C.C.; Mesquita, C.T.; Chong, A.Y.; Boland, P.; Glineur, D.; Sun, L.; Beanlands, R.S.; Mielniczuk, L.M. The current role of viability imaging to guide revascularization and therapy decisions in patients with heart failure and reduced left ventricular function. Can. J. Cardiol. 2019, 35, 1015–1029. [Google Scholar] [CrossRef] [PubMed]
- Saric, P.; Young, K.A.; Rodriguez-Porcel, M.; Chareonthaitawee, P. PET Imaging in Cardiac Sarcoidosis: A Narrative Review with Focus on Novel PET Tracers. Pharmaceuticals 2021, 14, 1286. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.; Leucker, T.M. Applications of PET-MR Imaging in Cardiovascular Disorders. PET Clin. 2020, 15, 509–520. [Google Scholar] [CrossRef]
- Pelletier-Galarneau, M.; Martineau, P.; El Fakhri, G. Quantification of PET Myocardial Blood Flow. Curr. Cardiol. Rep. 2019, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.G.; Case, J.A.; Dorbala, S.; Einstein, A.J.; Galt, J.R.; Pagnanelli, R.; Bullock-Palmer, R.P.; Soman, P.; Wells, R.G. Contemporary cardiac SPECT imaging—Innovations and best practices: An information statement from the American Society of Nuclear Cardiology. Circ. Cardiovasc. Imaging 2018, 11, e000020. [Google Scholar] [CrossRef] [PubMed]
- Dorbala, S.; Ananthasubramaniam, K.; Armstrong, I.S.; Chareonthaitawee, P.; DePuey, E.G.; Einstein, A.J.; Gropler, R.J.; Holly, T.A.; Mahmarian, J.J.; Park, M.-A.; et al. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation. J. Nucl. Cardiol. 2018, 25, 1784–1846. [Google Scholar] [CrossRef]
- Löffler, A.I.; Kramer, C.M. Myocardial Viability Testing to Guide Coronary Revascularization. Interv. Cardiol. Clin. 2018, 7, 355–365. [Google Scholar] [CrossRef]
- Pelletier-Galarneau, M.; Finnerty, V.; Tan, S.; Authier, S.; Gregoire, J.; Harel, F. Assessment of left ventricular ejection fraction with cardiofocal collimators: Comparison between IQ-SPECT, planar equilibrium radionuclide angiography, and cardiac magnetic resonance. J. Nucl. Cardiol. 2019, 26, 1857–1864. [Google Scholar] [CrossRef]
- Paul, A.K.; Nabi, H.A. Gated myocardial perfusion SPECT: Basic principles, technical aspects, and clinical applications. J. Nucl. Med. Technol. 2004, 32, 179–187; quiz 188–189. [Google Scholar]
- Beyer, T.; Freudenberg, L.S.; Townsend, D.W.; Czernin, J. The future of hybrid imaging—Part 1: Hybrid imaging technologies and SPECT/CT. Insights Imaging 2011, 2, 161–169. [Google Scholar] [CrossRef]
- Rajiah, P.S.; François, C.J.; Leiner, T. Cardiac MRI: State of the art. Radiology 2023, 307, e223008. [Google Scholar] [CrossRef] [PubMed]
- Rochitte, C.E.; Tassi, E.M.; Shiozaki, A.A. The emerging role of MRI in the diagnosis and management of cardiomyopathies. Curr. Cardiol. Rep. 2006, 8, 44–52. [Google Scholar] [CrossRef]
- Teo, L.L.S.; Hia, C.P.P. Advanced cardiovascular imaging in congenital heart disease. Int. J. Clin. Pract. 2011, 65, 17–29. [Google Scholar] [CrossRef]
- Lee, E.; Ibrahim, E.S.H.; Parwani, P.; Bhave, N.; Stojanovska, J. Practical guide to evaluating myocardial disease by cardiac MRI. Am. J. Roentgenol. 2020, 214, 546–556. [Google Scholar] [CrossRef]
- Polte, C.L.; Bobbio, E.; Bollano, E.; Bergh, N.; Polte, C.; Himmelman, J.; Lagerstrand, K.M.; Gao, S.A. Cardiovascular Magnetic Resonance in Myocarditis. Diagnostics 2022, 12, 399. [Google Scholar] [CrossRef] [PubMed]
- Cawley, P.J.; Maki, J.H.; Otto, C.M. Cardiovascular magnetic resonance imaging for valvular heart disease: Technique and validation. Circulation 2009, 119, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.R.; Salerno, M.; Kwong, R.Y.; Singh, A.; Heydari, B.; Kramer, C.M. Stress Cardiac Magnetic Resonance Myocardial Perfusion Imaging: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2021, 78, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Peker, E.; Chandrashekhar, Y.; Nagel, E. T1 mapping in characterizing myocardial disease: A comprehensive review. Circ. Res. 2016, 119, 277–299. [Google Scholar] [CrossRef]
- Shah, D.V.; Kalekar, D.T.; Gupta, D.A.; Lamghare, D.P. Role of Late Gadolinium Enhancement in the Assessment of Myocardial Viability. Cureus 2022, 14, e22844. [Google Scholar] [CrossRef]
- Bonetti, P.O.; Lerman, L.O.; Napoli, C.; Lerman, A. Statin effects beyond lipid lowering—Are they clinically relevant? Eur. Heart J. 2003, 24, 225–248. [Google Scholar] [CrossRef]
- Agewall, S.; Hernberg, A. Atorvastatin normalizes endothelial function in healthy smokers. Clin. Sci. 2006, 111, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Taba, M.Y.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Anti-inflammatory Action of Statins in Cardiovascular Disease: The Role of Inflammasome and Toll-Like Receptor Pathways. Clin. Rev. Allergy Immunol. 2021, 60, 175–199. [Google Scholar] [CrossRef] [PubMed]
- Hussein, O.; Schlezinger, S.; Rosenblat, M.; Keidar, S.; Aviram, M. Reduced susceptibility of low density lipoprotein (LDL) to lipid peroxidation after fluvastatin therapy is associated with the hypocholesterolemic effect of the drug and its binding to the LDL. Atherosclerosis 1997, 128, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Heestermans, M.; Poenou, G.; Hamzeh-Cognasse, H.; Cognasse, F.; Bertoletti, L. Anticoagulants: A Short History, Their Mechanism of Action, Pharmacology, and Indications. Cells 2022, 11, 3214. [Google Scholar] [CrossRef]
- Alquwaizani, M.; Buckley, L.; Adams, C.; Fanikos, J. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013, 1, 83–97. [Google Scholar] [CrossRef]
- Wilbur, J.; Shian, B. Deep venous thrombosis and pulmonary embolism: Current therapy. Am. Fam. Physician 2017, 95, 295–302. [Google Scholar]
- Thaler, J.; Pabinger, I.; Ay, C. Anticoagulant Treatment of Deep Vein Thrombosis and Pulmonary Embolism: The Present State of the Art. Front. Cardiovasc. Med. 2015, 2, 30. [Google Scholar] [CrossRef]
- Chen, A.; Stecker, E.; Warden, B.A. Direct oral anticoagulant use: A practical guide to common clinical challenges. J. Am. Heart Assoc. 2020, 9, e017559. [Google Scholar] [CrossRef]
- Katsanos, A.H.; Kamel, H.; Healey, J.S.; Hart, R.G. Stroke prevention in atrial fibrillation: Looking forward. Circulation 2020, 142, 2371–2388. [Google Scholar] [CrossRef] [PubMed]
- Jourdi, G.; Lordkipanidze, M.; Philippe, A.; Bachelot-Loza, C.; Gaussem, P. Current and novel antiplatelet therapies for the treatment of cardiovascular diseases. Int. J. Mol. Sci. 2021, 22, 13079. [Google Scholar] [CrossRef]
- Arockiam, S.; Staniforth, B.; Kepreotis, S.; Maznyczka, A.; Bulluck, H. A Contemporary Review of Antiplatelet Therapies in Current Clinical Practice. Int. J. Mol. Sci. 2023, 24, 11132. [Google Scholar] [CrossRef]
- Passacquale, G.; Sharma, P.; Perera, D.; Ferro, A. Antiplatelet therapy in cardiovascular disease: Current status and future directions. Br. J. Clin. Pharmacol. 2022, 88, 2686–2699. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Caravaca, J.M.; Camelo-Castillo, A.; Ramírez-Macías, I.; Gil-Pérez, P.; López-García, C.; Esteve-Pastor, M.A.; Orenes-Piñero, E.; Tello-Montoliu, A.; Marín, F. Antithrombotic Therapy in Patients with Peripheral Artery Disease: A Focused Review on Oral Anticoagulation. Int. J. Mol. Sci. 2021, 22, 7113. [Google Scholar] [CrossRef] [PubMed]
- Benz, A.P.; Johansson, I.; Dewilde, W.J.M.; Lopes, R.D.; Mehran, R.; Sartori, S.; Sarafoff, N.; Yasuda, S.; McIntyre, W.F.; Healey, J.S.; et al. Antiplatelet therapy in patients with atrial fibrillation: A systematic review and meta-analysis of randomized trials. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 648–659. [Google Scholar] [CrossRef]
- Heran, B.S.; Wong, M.M.; Heran, I.K.; Wright, J.M. Blood pressure lowering efficacy of angiotensin converting enzyme (ACE) inhibitors for primary hypertension. Cochrane Database Syst. Rev. 2008, 2008, CD003823. [Google Scholar] [CrossRef] [PubMed]
- Messerli, F.H.; Bangalore, S.; Bavishi, C.; Rimoldi, S.F. Angiotensin-converting enzyme inhibitors in hypertension: To use or not to use? J. Am. Coll. Cardiol. 2018, 71, 1474–1482. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.J.; Vaughan, D.E. Angiotensin-converting enzyme inhibitors. Circulation 1998, 97, 1411–1420. [Google Scholar] [CrossRef]
- Silva, I.V.G.; de Figueiredo, R.C.; Rios, D.R.A. Effect of Different Classes of Antihypertensive Drugs on Endothelial Function and Inflammation. Int. J. Mol. Sci. 2019, 20, 3458. [Google Scholar] [CrossRef]
- Barreras, A.; Gurk-Turner, C. Angiotensin II receptor blockers. Proc. Bayl. Univ. Med. Cent. 2003, 16, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Dézsi, C.A. The Different Therapeutic Choices with ARBs. Which One to Give? When? Why? Am. J. Cardiovasc. Drugs 2016, 16, 255–266. [Google Scholar] [CrossRef]
- Taylor, A.A.; Siragy, H.; Nesbitt, S. Angiotensin receptor blockers: Pharmacology, efficacy, and safety. J. Clin. Hypertens. 2011, 13, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Omboni, S.; Volpe, M. Angiotensin receptor blockers versus angiotensin converting enzyme inhibitors for the treatment of arterial hypertension and the role of olmesartan. Adv. Ther. 2019, 36, 278–297. [Google Scholar] [CrossRef]
- Grant, A.O., Jr. On the mechanism of action of antiarrhythmic agents. Am. Heart J. 1992, 123 Pt 2, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Shenasa, M.; Shenasa, M.A.; Smith, M. Class I Antiarrhythmic Drugs: Na+ Channel Blockers. In Antiarrhythmic Drugs; Current Cardiovasc Therapy; Martínez-Rubio, A., Tamargo, J., Dan, G., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Serdoz, L.V.; Rittger, H.; Furlanello, F.; Bastian, D. Quinidine—A legacy within the modern era of antiarrhythmic therapy. Pharmacol. Res. 2019, 144, 257–263. [Google Scholar] [CrossRef]
- Larson, J.; Rich, L.; Deshmukh, A.; Judge, E.C.; Liang, J.J. Pharmacologic Management for Ventricular Arrhythmias: Overview of Anti-Arrhythmic Drugs. J. Clin. Med. 2022, 11, 3233. [Google Scholar] [CrossRef] [PubMed]
- Echt, D.S.; Ruskin, J.N. Use of flecainide for the treatment of atrial fibrillation. Am. J. Cardiol. 2020, 125, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Andrikopoulos, G.K.; Pastromas, S.; Tzeis, S. Flecainide: Current status and perspectives in arrhythmia management. World J. Cardiol. 2015, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- Dézsi, C.A.; Szentes, V. The real role of β-blockers in daily cardiovascular therapy. Am. J. Cardiovasc. Drugs 2017, 17, 361–373. [Google Scholar] [CrossRef]
- Pathak, A.; Mrabeti, S. β-Blockade for patients with hypertension, ischemic heart disease or heart failure: Where are we now? Vasc. Health Risk Manag. 2021, 17, 337–348. [Google Scholar] [CrossRef]
- Brophy, J.M.; Joseph, L.; Rouleau, J.L. β-Blockers in congestive heart failure: A Bayesian meta-analysis. Ann. Intern. Med. 2001, 134, 550–560. [Google Scholar] [CrossRef]
- Masarone, D.; Martucci, M.L.; Errigo, V.; Pacileo, G. The Use of β-Blockers in Heart Failure with Reduced Ejection Fraction. J. Cardiovasc. Dev. Dis. 2021, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Barekatain, A.; Razavi, M. Antiarrhythmic therapy in atrial fibrillation: Indications, guidelines, and safety. Tex. Heart Inst. J. 2012, 39, 532–534. [Google Scholar]
- Van Herendael, H.; Dorian, P. Amiodarone for the treatment and prevention of ventricular fibrillation and ventricular tachycardia. Vasc. Health Risk Manag. 2010, 6, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.; Nandkeolyar, S.; Lan, H.; Desai, P.; Evans, J.; Hauschild, C.; Choksi, D.; Abudayyeh, I.; Contractor, T.; Hilliard, A. Amiodarone: A Comprehensive Guide for Clinicians. Am. J. Cardiovasc. Drugs 2020, 20, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; Prystowsky, E.N. Sotalol: An important new antiarrhythmic. Am. Heart J. 1999, 137, 388–409. [Google Scholar] [CrossRef] [PubMed]
- Samanta, R.; Thiagalingam, A.; Turner, C.; Lakkireddy, D.J.; Kovoor, P. The Use of Intravenous Sotalol in Cardiac Arrhythmias. Heart Lung Circ. 2018, 27, 1318–1326. [Google Scholar] [CrossRef]
- Elliott, W.J.; Ram, C.V. Calcium channel blockers. J. Clin. Hypertens. 2011, 13, 687–689. [Google Scholar] [CrossRef]
- Alshaya, O.A.; Alhamed, A.; Althewaibi, S.; Fetyani, L.; Alshehri, S.; Alnashmi, F.; Alharbi, S.; Alrashed, M.; Alqifari, S.F.; Alshaya, A.I. Calcium Channel Blocker Toxicity: A Practical Approach. J. Multidiscip. Healthc. 2022, 15, 1851–1862. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Elton, A.; Kwa, M. Comparison of various calcium antagonist on vasospastic angina: A systematic review. Open Heart 2023, 10, e002179. [Google Scholar] [CrossRef] [PubMed]
- Niessner, A.; Wassmann, S.; Sechtem, U.; Lanza, G.A.; De Vita, A. Chronic stable angina. In The ESC Handbook on Cardiovascular Pharmacotherapy, 2nd ed.; Kaski, J.C., Kjeldsen, K.P., Eds.; The European Society of Cardiology Series; ESC Publications: Oxford, UK, 2020. [Google Scholar] [CrossRef]
- Rajput, F.A.; Du, L.; Chappell, R.J.; Berei, T.J.; Goldberger, Z.D.; Wright, J.M. Comparative efficacy and safety of intravenous verapamil and diltiazem for rate control in rapidly conducted atrial fibrillation and atrial flutter. J. Gen. Intern. Med. 2020, 35, 3721–3723. [Google Scholar] [CrossRef]
- Yi, C.; Zhang, J.; Wang, J. Effect of Calcium Channel Blockers versus Diuretics for Hypertension. Contrast Media Mol. Imaging. 2022, 2022, 3739463. [Google Scholar] [CrossRef]
- Jun, M.; Foote, C.; Lv, J.; Neal, B.; Patel, A.; Nicholls, S.J.; Grobbee, D.E.; Cass, A.; Chalmers, J.; Perkovic, V. Effects of fibrates on cardiovascular outcomes: A systematic review and meta-analysis. Lancet 2010, 375, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Fazio, S.; Linton, M.F. The role of fibrates in managing hyperlipidemia: Mechanisms of action and clinical efficacy. Curr. Atheroscler. Rep. 2004, 6, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Tenenbaum, A.; Fisman, E.Z. Fibrates are an essential part of modern anti-dyslipidemic arsenal: Spotlight on atherogenic dyslipidemia and residual risk reduction. Cardiovasc. Diabetol. 2012, 11, 125. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Zimmerman, F.H. Fibrates in combination with statins in the management of dyslipidemia. J. Clin. Hypertens. 2006, 8, 35–41; quiz 42–43. [Google Scholar] [CrossRef]
- Bozkurt, B.; Nair, A.P.; Misra, A.; Scott, C.Z.; Mahar, J.H.; Fedson, S. Neprilysin Inhibitors in Heart Failure: The Science, Mechanism of Action, Clinical Studies, and Unanswered Questions. JACC Basic Transl. Sci. 2022, 8, 88–105. [Google Scholar] [CrossRef] [PubMed]
- Bayes-Genis, A.; Morant-Talamante, N.; Lupón, J. Neprilysin and Natriuretic Peptide Regulation in Heart Failure. Curr. Heart Fail. Rep. 2016, 13, 151–157. [Google Scholar] [CrossRef]
- Greenberg, B. Angiotensin Receptor-Neprilysin Inhibition (ARNI) in Heart Failure. Int. J. Heart Fail. 2020, 2, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, T.; Shen, W.; Xu, X.; Yang, P.; Zhu, D.; Fang, H.; Wan, H.; Wu, T.; Wu, Y.; et al. Efficacy and safety of sacubitril-valsartan in heart failure: A meta-analysis of randomized controlled trials. ESC Heart Fail. 2020, 7, 3841–3850. [Google Scholar] [CrossRef]
- Fala, L. Entresto (Sacubitril/Valsartan): First-in-Class Angiotensin Receptor Neprilysin Inhibitor FDA Approved for Patients with Heart Failure. Am. Health Drug Benefits 2015, 8, 330–334. [Google Scholar]
- Goodfriend, T.L. Aldosterone—A hormone of cardiovascular adaptation and maladaptation. J. Clin. Hypertens. 2006, 8, 133–139. [Google Scholar] [CrossRef] [PubMed]
- He, B.J.; Anderson, M.E. Aldosterone and cardiovascular disease: The heart of the matter. Trends Endocrinol. Metab. 2013, 24, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, M.; Messineo, F.; Coplan, N.L. Aldosterone receptor antagonists in cardiovascular disease: A review of the recent literature and insight into potential future indications. Clin. Cardiol. 2012, 35, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Allan, D. Struthers, Thomas Unger, Physiology of aldosterone and pharmacology of aldosterone blockers. Eur. Heart J. Suppl. 2011, 13, B27–B30. [Google Scholar] [CrossRef]
- Roush, G.C.; Sica, D.A. Diuretics for Hypertension: A Review and Update. Am. J. Hypertens. 2016, 29, 1130–1137. [Google Scholar] [CrossRef]
- Reddy, P.; Mooradian, A.D. Diuretics: An update on the pharmacology and clinical uses. Am. J. Ther. 2009, 16, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Soman, B.; Vijayaraghavan, G. The role of organic nitrates in the optimal medical management of angina. E-J. Cardiol. Pract. 2017, 15. [Google Scholar]
- Divakaran, S.; Loscalzo, J. The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics. J. Am. Coll. Cardiol. 2017, 70, 2393–2410. [Google Scholar] [CrossRef] [PubMed]
- Jaswaney, R.; Sokoloff, S.; Rakita, V.; Rubin, D.J. SGLT-2 inhibitors in heart failure and chronic kidney disease: A review for internists. Clevel. Clin. J. Med. 2024, 91, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Cavallari, I.; Crispino, S.P.; Segreti, A.; Ussia, G.P.; Grigioni, F. Practical Guidance for the Use of SGLT2 Inhibitors in Heart Failure. Am. J. Cardiovasc. Drugs 2023, 23, 609–621. [Google Scholar] [CrossRef]
- D’Amato, A.; Prosperi, S.; Severino, P.; Myftari, V.; Labbro Francia, A.; Cestiè, C.; Pierucci, N.; Marek-Iannucci, S.; Mariani, M.V.; Germanò, R.; et al. Current Approaches to Worsening Heart Failure: Pathophysiological and Molecular Insights. Int. J. Mol. Sci. 2024, 25, 1574. [Google Scholar] [CrossRef] [PubMed]
- Mercep, I.; Strikic, D.; Hrabac, P.; Pecin, I.; Reiner, Ž. PCSK9 inhibition: From effectiveness to cost-effectiveness. Front. Cardiovasc. Med. 2024, 11, 1339487. [Google Scholar] [CrossRef]
- Muzammil, K.; Hooshiar, M.H.; Varmazyar, S.; Omar, T.M.; Karim, M.M.; Aadi, S.; Kalavi, S.; Yasamineh, S. Potential use of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and prevention method in viral infection. Microb. Cell Factories 2024, 23, 90. [Google Scholar] [CrossRef]
- Katzmann, J.L.; Gouni-Berthold, I.; Laufs, U. PCSK9 inhibition: Insights from clinical trials and future prospects. Front. Physiol. 2020, 11, 595819. [Google Scholar] [CrossRef] [PubMed]
- Jolugbo, P.; Ariëns, R.A. Thrombus composition and efficacy of thrombolysis and thrombectomy in acute ischemic stroke. Stroke 2021, 52, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Izcovich, A.; Criniti, J.M.; Popoff, F.; Lu, L.; Wu, J.; Ageno, W.; Witt, D.M.; Jaff, M.R.; Schulman, S.; Manja, V.; et al. Thrombolytics for venous thromboembolic events: A systematic review with meta-analysis. Blood Adv. 2020, 4, 1539–1553. [Google Scholar] [CrossRef] [PubMed]
- Ram, C.V. Direct renin inhibitors: A new approach to antihypertensive drug treatment. J. Clin. Hypertens. 2007, 9, 615–621. [Google Scholar] [CrossRef]
- Sullivan, R.D.; Mehta, R.M.; Tripathi, R.; Reed, G.L.; Gladysheva, I.P. Renin Activity in Heart Failure with Reduced Systolic Function-New Insights. Int. J. Mol. Sci. 2019, 20, 3182. [Google Scholar] [CrossRef]
- Pradhan, A.; Bhandari, M.; Sethi, R. Ezetimibe and Improving Cardiovascular Outcomes: Current Evidence and Perspectives. Cardiol. Res. Pract. 2020, 2020, 9815016. [Google Scholar] [CrossRef]
- Grigore, L.; Norata, G.D.; Catapano, A.L. Combination therapy in cholesterol reduction: Focus on ezetimibe and statins. Vasc. Health Risk Manag. 2008, 4, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Hong, L.; Wang, H.; Li, B.; Zhang, M.; Li, J.; Yang, L.; Liu, F. Inclisiran: A new generation of lipid-lowering siRNA therapeutic. Front. Pharmacol. 2023, 14, 1260921. [Google Scholar] [CrossRef] [PubMed]
- Samuel, E.; Watford, M.; Egolum, U.O.; Ombengi, D.N.; Ling, H.; Cates, D.W. Inclisiran: A First-in-Class siRNA Therapy for Lowering Low-Density Lipoprotein Cholesterol. Ann. Pharmacother. 2023, 57, 317–324. [Google Scholar] [CrossRef]
- Badu-Boateng, C.; Jennings, R.; Hammersley, D. The therapeutic role of ivabradine in heart failure. Ther. Adv. Chronic Dis. 2018, 9, 199–207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sathyamurthy, I.; Newale, S. Ivabradine: Evidence and current role in cardiovascular diseases and other emerging indications. Indian Heart J. 2018, 70 (Suppl. S3), S435–S441. [Google Scholar] [CrossRef] [PubMed]
- Vadnais, D.S.; Wenger, N.K. Emerging clinical role of ranolazine in the management of angina. Ther. Clin. Risk Manag. 2010, 6, 517–530. [Google Scholar]
- Aslam, S.; Gray, D. Ranolazine (Ranexa®) in the treatment of chronic stable angina. Adv. Ther. 2010, 27, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.H.; Smith, P.K. Coronary-artery bypass grafting. N. Engl. J. Med. 2016, 374, 1954–1964. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Hiwale, K. Updates in the Management of Coronary Artery Disease: A Review Article. Cureus 2023, 15, e50644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spadaccio, C.; Benedetto, U. Coronary artery bypass grafting (CABG) vs. percutaneous coronary intervention (PCI) in the treatment of multivessel coronary disease: Quo vadis?—A review of the evidences on coronary artery disease. Ann. Cardiothorac. Surg. 2018, 7, 506. [Google Scholar] [CrossRef]
- Alzghari, T.; Dimagli, A.; An, K.R.; Cancelli, G.; Harik, L.; Perezgorvas-Olaria, R.; Soletti, G.J.; Gaudino, M. Conduits and Strategies for Arterial Revascularization in CABG. Rev. Cardiovasc. Med. 2023, 24, 188. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.Q.; Ludman, P.F. Percutaneous coronary intervention. Medicine 2022, 50, 437–444. [Google Scholar] [CrossRef]
- Shaikh, G.A.; Babar, A.B.; Yaqoob, S.; Rohail, S.; Uddin, N.; Khan, M.K.; Sam, S.J.; Zafar, N.U.H.; Shah, H.H.; Lashari, M.N. Successful management of coronary complications during percutaneous intervention: A case report. SAGE Open Med. Case Rep. 2024, 12, 2050313X241252589. [Google Scholar] [CrossRef] [PubMed]
- Kern, M.J.; Lim, M.; Sorajja, P. The basics of percutaneous coronary interventions. In The Interventional Cardiac Catheterization Handbook; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Xenogiannis, I. Introduction to Coronary Angioplasty. In Mastering Endovascular Techniques: Tips and Tricks in Endovascular Surgery; Springer International Publishing: Cham, Switzerland, 2024; pp. 419–434. [Google Scholar]
- Rose, A.G. Pathology of Heart Valve Replacement; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Del Forno, B.; De Bonis, M.; Agricola, E.; Melillo, F.; Schiavi, D.; Castiglioni, A.; Montorfano, M.; Alfieri, O. Mitral valve regurgitation: A disease with a wide spectrum of therapeutic options. Nat. Rev. Cardiol. 2020, 17, 807–827. [Google Scholar] [CrossRef]
- Gales, J.; Krasuski, R.A.; Fleming, G.A. Transcatheter valve replacement for right-sided valve disease in congenital heart patients. Prog. Cardiovasc. Dis. 2018, 61, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Holmes, D.R.; Webb, J.; Cribier, A.; Kodali, S.K.; Williams, M.R.; Leon, M.B.; Mack, M.J.; Holmes, D.R.; Webb, J.; et al. Patient selection for transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2013, 62, S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Tillquist, M.N.; Maddox, T.M. Cardiac crossroads: Deciding between mechanical or bioprosthetic heart valve replacement. Patient Prefer. Adherence 2011, 17, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Carrión-Camacho, M.R.; Marín-León, I.; Molina-Doñoro, J.M.; González-López, J.R. Safety of permanent pacemaker implantation: A prospective study. J. Clin. Med. 2019, 8, 35. [Google Scholar] [CrossRef]
- Kamp, N.J.; Al-Khatib, S.M. The subcutaneous implantable cardioverter-defibrillator in review. Am. Heart J. 2019, 217, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Keisler, B.; Carter, C. Abdominal aortic aneurysm. Am. Fam. Physician 2015, 91, 538–543. [Google Scholar]
- Lederle, F.A.; Freischlag, J.A.; Kyriakides, T.C.; Matsumura, J.S.; Padberg, F.T., Jr.; Kohler, T.R.; Kougias, P.; Jean-Claude, J.M.; Cikrit, D.F.; Swanson, K.M. Long-term comparison of endovascular and open repair of abdominal aortic aneurysm. N. Engl. J. Med. 2012, 367, 1988–1997. [Google Scholar] [CrossRef]
- Greenhalgh, R.M. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: Randomised controlled trial. Lancet 2004, 364, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Chaikof, E.L.; Blankensteijn, J.D.; Harris, P.L.; White, G.H.; Zarins, C.K.; Bernhard, V.M.; Matsumura, J.S.; May, J.; Veith, F.J.; Fillinger, M.F.; et al. Reporting standards for endovascular aortic aneurysm repair. J. Vasc. Surg. 2002, 35, 1048–1060. [Google Scholar] [CrossRef]
- Kim, I.C.; Youn, J.C.; Kobashigawa, J.A. The past, present and future of heart transplantation. Korean Circ. J. 2018, 48, 565–590. [Google Scholar] [CrossRef] [PubMed]
- Mangini, S.; Alves, B.R.; Silvestre, O.M.; Pires, P.V.; Pires, L.J.T.; Curiati, M.N.C.; Bacal, F. Heart transplantation. Einstein 2015, 13, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Kittleson, M.M. Recent advances in heart transplantation. F1000Research 2018, 7, 1008. [Google Scholar] [CrossRef] [PubMed]
- Tonsho, M.; Michel, S.; Ahmed, Z.; Alessandrini, A.; Madsen, J.C. Heart transplantation: Challenges facing the field. Cold Spring Harb. Perspect. Med. 2014, 4, a015636. [Google Scholar] [CrossRef] [PubMed]
- Schmack, B.; Weymann, A.; Popov, A.F.; Patil, N.P.; Sabashnikov, A.; Kremer, J.; Farag, M.; Brcic, A.; Lichtenstern, C.; Karck, M.; et al. Concurrent left ventricular assist device (LVAD) implantation and percutaneous temporary RVAD support via CardiacAssist Protek-Duo TandemHeart to preempt right heart failure. Med. Sci. Monit. Basic. Res. 2016, 22, 53. [Google Scholar] [CrossRef]
- Drost, V.C.E.; Otterspoor, L.C.; Zijderhand, C.; Sjatskig, J.; Kluin, J.; De Boer, R.A.; Caliskan, K. Shared Care for Patients with a Left Ventricular Assist Device: A Scoping Review. Eur. J. Cardiothorac. Surg. 2024, 2024, ezae285. [Google Scholar] [CrossRef]
- Khatiwada, N.; Hong, Z. Potential Benefits and Risks Associated with the Use of Statins. Pharmaceutics 2024, 16, 214. [Google Scholar] [CrossRef]
- Ko, D.T.; Hebert, P.R.; Coffey, C.S.; Sedrakyan, A.; Curtis, J.P.; Krumholz, H.M. Beta-blocker therapy and symptoms of depression, fatigue, and sexual dysfunction. JAMA 2002, 288, 351–357. [Google Scholar] [CrossRef]
- Chen, R.; Suchard, M.A.; Krumholz, H.M.; Schuemie, M.J.; Shea, S.; Duke, J.; Pratt, N.; Reich, C.G.; Madigan, D.; You, S.C.; et al. Comparative First-Line Effectiveness and Safety of ACE (Angiotensin-Converting Enzyme) Inhibitors and Angiotensin Receptor Blockers: A Multinational Cohort Study. Hypertension 2021, 78, 591–603. [Google Scholar] [CrossRef]
- Rita, G.M.; Preeti, P.; Richard, J. Hamilton. In Calcium Channel Blockers; StatPearls Publishing: St. Petersburg, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482473/ (accessed on 1 January 2020).
- Mendyka, B.E. Fluid and electrolyte disorders caused by diuretic therapy. AACN Clin. Issues Crit. Care Nurs. 1992, 3, 672–680. [Google Scholar] [CrossRef]
- Gutermann, I.K.; Niggemeier, V.; Zimmerli, L.U.; Holzer, B.M.; Battegay, E.; Scharl, M. Gastrointestinal bleeding and anticoagulant or antiplatelet drugs: Systematic search for clinical practice guidelines. Medicine 2015, 94, e377. [Google Scholar] [CrossRef] [PubMed]
- Cleophas, T.J.; Niemeyer, M.C.; van der Wall, E.E.; van der Meulen, J. Nitrate-induced headache in patients with stable angina pectoris: Beneficial effect of starting on a low dosage. 5-ISMN headache study group. Angiology 1996, 47, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Nishiwaki, H.; Ota, E.; Levack, W.M.; Noma, H. Aldosterone antagonists for people with chronic kidney disease requiring dialysis. Cochrane Database Syst. Rev. 2021, 2, CD013109. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, A.G.; Kalra, S.; Purandare, V.; Vasnawala, H. Genital Infections with Sodium Glucose Cotransporter-2 Inhibitors: Occurrence and Management in Patients with Type 2 Diabetes Mellitus. Indian J. Endocrinol. Metab. 2018, 22, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.E.; Skavdis, A.; Sourlas, A.; Papakonstantinou, E.J.; Peña Genao, E.; Echavarria Uceta, R.; Guzman, E. Safety and Tolerability of PCSK9 Inhibitors: Current Insights. Clin. Pharmacol. 2020, 12, 191–202. [Google Scholar] [CrossRef]
- Halegoua-De Marzio, D.; Navarro, V.J. Hepatotoxicity of Cardiovascular and Antidiabetic Drugs. In Drug-Induced Liver Disease; Academic Press: New York, NY, USA, 2013; pp. 519–540. [Google Scholar]
- Usuda, D.; Higashikawa, T.; Hotchi, Y.; Usami, K.; Shimozawa, S.; Tokunaga, S.; Osugi, I.; Katou, R.; Ito, S.; Yoshizawa, T.; et al. Angiotensin receptor blocker neprilysin inhibitors. World J. Cardiol. 2021, 13, 325–339. [Google Scholar] [CrossRef]
- Chen, C.; Kaur, G.; Mehta, P.K.; Morrone, D.; Godoy, L.C.; Bangalore, S.; Sidhu, M.S. Ivabradine in Cardiovascular Disease Management Revisited: A Review. Cardiovasc. Drugs Ther. 2021, 35, 1045–1056. [Google Scholar] [CrossRef]
- Aldakkak, M.; Stowe, D.F.; Camara, A.K. Safety and Efficacy of Ranolazine for the Treatment of Chronic Angina Pectoris. Clin. Med. Insights Ther. 2013, 2013, 1–14. [Google Scholar] [CrossRef]
- Whayne, T.F., Jr. Clinical Use of Digitalis: A State of the Art Review. Am. J. Cardiovasc. Drugs. 2018, 18, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.W. The basic mechanism of inotropic action of digitalis glycosides. J. Pharmacol. 1984, 15 (Suppl. S1), 35–51. [Google Scholar]
- NTobarran, B.K. Wills, Digitalis Glycosides, Encyclopedia of Toxicology, 4th ed.; Academic Press: New York, NY, USA, 2024; pp. 765–770. ISBN 9780323854344. [Google Scholar] [CrossRef]
- Cuthbert, J.J.; Clark, A.L. Diuretic Treatment in Patients with Heart Failure: Current Evidence and Future Directions—Part I: Loop Diuretics. Curr. Heart Fail. Rep. 2024, 21, 101–114. [Google Scholar] [CrossRef]
- Braunwald, E. Effects of digitalis on the normal and the failing heart. J. Am. Coll. Cardiol. 1985, 5 (Suppl. S5), 51A–59A. [Google Scholar] [CrossRef]
- Ginter, E.; Simko, V. Garlic (Allium sativum L.) and cardiovascular diseases. Bratisl. Lekárske Listy 2010, 111, 452–456. [Google Scholar]
- Shouk, R.; Abdou, A.; Shetty, K.; Sarkar, D.; Eid, A.H. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr. Res. 2014, 34, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef]
- Rahman, K.; Lowe, G.M. Garlic and cardiovascular disease: A critical review. J. Nutr. 2006, 136 (Suppl. S3), 736S–740S. [Google Scholar] [CrossRef] [PubMed]
- Qidwai, W.; Ashfaq, T. Role of garlic usage in cardiovascular disease prevention: An evidence-based approach. Evid. Based Complement. Altern. Med. 2013, 2013, 125649. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Pan, Q.; Ji, K.; Tian, Z.; Zhou, H.; Li, S.; Luo, C.; Li, J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front. Pharmacol. 2023, 14, 1187910. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Hou, X.W.; Lu, M.L. Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. Acta Pharmacol. Sin. 2019, 40, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yu, T.; Chen, X.; Du, Z.; Yu, M.; Xiong, J. Effect of Astragalus membranaceus on left ventricular remodeling in HFrEF: A systematic review and meta-analysis. Front. Pharmacol. 2024, 15, 1345797. [Google Scholar] [CrossRef] [PubMed]
- Tassell, M.C.; Kingston, R.; Gilroy, D.; Lehane, M.; Furey, A. Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacogn. Rev. 2010, 4, 32. [Google Scholar] [PubMed]
- Wu, M.; Liu, L.; Xing, Y.; Yang, S.; Li, H.; Cao, Y. Roles and Mechanisms of Hawthorn and Its Extracts on Atherosclerosis: A Review. Front. Pharmacol. 2020, 11, 118. [Google Scholar] [CrossRef]
- Brixius, K.; Willms, S.; Napp, A.; Tossios, P.; Ladage, D.; Bloch, W.; Asakawa, Y. Crataegus special extract WS 1442 induces an endothelium-dependent, NO-mediated vasorelaxation via eNOS-phosphorylation at serine 1177. Cardiovasc. Drugs Ther. 2006, 20, 177–184. [Google Scholar] [CrossRef]
- Ling, S. Effects of four medicinal herbs on human vascular endothelial cells in culture. Int. J. Cardiol. 2007, 128, 350–358. [Google Scholar] [CrossRef]
- Zhang, Z. Hypercholesterolaemic activity of Hawthorn fruit is mediated by regulation of cholesterol 7 ά Hydroxylase and acyl CoA: Cholesterol acyltransferase. Food Res. Int. 2002, 35, 885–891. [Google Scholar] [CrossRef]
- Fan, C.; Yan, J.; Qian, Y.; Wo, X.; Gao, L. Regulation of lipoprotein lipase expression by effect of hawthorn fl avonoids on peroxisome proliferator response element pathway. J. Pharmacol. Sci. 2005, 100, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Schüssler, M.; Hölzl, J.; Fricke, U. Myocardial effects of flavonoids from Crataegus species. Arzneim. Forsch. 1995, 45, 842–845. [Google Scholar]
- Long, S.R.; Carey, R.A.; Crofoot, K.M.; Proteau, P.J.; Filtz, T.M. Effect of hawthorn (Crataegus oxycantha) crude extract and chromatographic fractions on multiple activities in a cultured cardiomyocyte assay. Phytomedicine 2006, 13, 643–650. [Google Scholar] [CrossRef]
- Hatziagapiou, K.; Lambrou, G.I. The protective role of Crocus sativus L. (Saffron) against ischemia-reperfusion injury, hyperlipidemia and atherosclerosis: Nature opposing cardiovascular diseases. Curr. Cardiol. Rev. 2018, 14, 272–289. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, J.; Liu, C.; Fang, C. Protective effects of crocetin pretreatment on myocardial injury in an ischemia/reperfusion rat model. Eur. J. Pharmacol. 2014, 741, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Jahanbakhsh, Z.; Rasoulian, B.; Jafari, M.; Shekarforoush, S.; Esmailidehaj, M.; Mohammadi, M.T.; Aghai, H.; Salehi, M.; Khoshbaten, A. Protective effect of crocin against reperfusion-induced cardiac arrhythmias in anaesthetized rats. EXCLI J. 2012, 11, 20–29. [Google Scholar] [PubMed]
- Bharti, S.; Golechha, M.; Kumari, S.; Siddiqui, K.M.; Arya, D.S. Akt/GSK-3beta/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia-reperfusion injury in rats. Eur. J. Nutr. 2012, 51, 719–727. [Google Scholar] [CrossRef] [PubMed]
- He, S.Y.; Qian, Z.Y.; Tang, F.T.; Wen, N.; Xu, G.L.; Sheng, L. Effect of crocin on experimental atherosclerosis in quails and its mechanisms. Life Sci. 2005, 77, 907–921. [Google Scholar] [CrossRef] [PubMed]
- He, S.Y.; Qian, Z.Y.; Wen, N.; Tang, F.T.; Xu, G.L.; Zhou, C.H. Influence of Crocetin on experimental atherosclerosis in hyperlipidamic-diet quails. Eur. J. Pharmacol. 2007, 554, 191–195. [Google Scholar] [CrossRef]
- Wang, L.; Ma, R.; Liu, C.; Liu, H.; Zhu, R.; Guo, S.; Tang, M.; Li, Y.; Niu, J.; Fu, M.; et al. Salvia miltiorrhiza: A Potential Red Light to the Development of Cardiovascular Diseases. Curr. Pharm. Des. 2017, 23, 1077–1097. [Google Scholar] [CrossRef]
- Zheng, L.; Liu, M.; Wei, M.; Liu, Y.; Dong, M.; Luo, Y.; Li, Z. Tanshinone IIA attenuates hypoxic pulmonary hypertension via modulating KV currents. Respir. Physiol. Neurobiol. 2015, 205, 120–128. [Google Scholar] [CrossRef]
- Fang, J.; Xu, S.W.; Wang, P.; Tang, F.T.; Zhou, S.G.; Gao, J.; Chen, J.W. Tanshinone II-A attenuates cardiac fibrosis and modulates collagen metabolism in rats with renovascular hypertension. Phytomedicine 2010, 18, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.H.; Tong, Y.H.; Xu, W.; Ma, J.; Chen, Y. Tanshinone II A attenuates inflammatory responses of rats with myocardial infarction by reducing MCP-1 expression. Phytomedicine 2010, 17, 212–218. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, M.; Chen, C.; Le, X.; Sun, S.; Yin, Y. Cardiovascular protection with danshensu in spontaneously hypertensive rats. Biol. Pharm. Bull. 2011, 34, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.G.; Oh, H.; Chung, H.T.; Lee, H.S. Inhibition of angiotensin converting enzyme by lithospermic acid B isolated from Radix Salviae miltiorrhiza Bunge. Phytother. Res. 2003, 17, 917–920. [Google Scholar] [CrossRef]
- Leung, S.W.; Zhu, D.Y.; Man, R.Y. Effects of the aqueous extract of Salvia Miltiorrhiza (danshen) and its magnesium tanshinoate B-enriched form on blood pressure. Phytother. Res. 2010, 24, 769–774. [Google Scholar] [CrossRef]
- Tian, T.; Xu, L.M. Effects of Salviae miltiorrhizae and salvianolic acid B on microcirculation of liver in mice with portal hypertension. Zhong Xi Yi Jie He Xue Bao 2009, 7, 151–156. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, M.; Ma, X.; Lin, J.; Li, D. CD4+CD25+Foxp3+ regulatory T cells protect the proinflammatory activation of human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2621–2630. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, L.; Akinyi, M.; Li, Y.; Duan, Z.; Zhu, Y. Danshensu protects isolated heart against ischemia reperfusion injury through activation of Akt/ERK1/2/Nrf2 signaling. Int. J. Clin. Exp. Med. 2015, 8, 14793–14804. [Google Scholar] [PubMed]
- Ai, F.; Chen, M.; Li, W.; Yang, Y.; Xu, G.; Gui, F.; Liu, Z.; Bai, X. Danshen improves damaged cardiac angiogenesis and cardiac function induced by myocardial infarction by modulating HIF1alpha/VEGFA signaling pathway. Int. J. Clin. Exp. Med. 2015, 8, 18311–18318. [Google Scholar]
- Jin, Y.C.; Kim, C.W.; Kim, Y.M.; Nizamutdinova, I.T.; Ha, Y.M. Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 2009, 614, 91–97. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, C.; Chen, X. Cryptotanshinone inhibits oxidized LDLinduced adhesion molecule expression via ROS dependent NFkappaB pathways. Cell Adhes. Migr. 2016, 10, 248–258. [Google Scholar] [CrossRef]
- Huang, K.J.; Wang, H.; Xie, W.Z.; Zhang, H.S. Investigation of the effect of tanshinone IIA on nitric oxide production in human vascular endothelial cells by fluorescence imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 68, 1180–1186. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Zhang, B. Tanshinone: An inhibitor of proliferation of vascular smooth muscle cells. J. Ethnopharmacol. 2005, 99, 93–98. [Google Scholar] [CrossRef]
- Ding, M.; Ye, T.X.; Zhao, G.R.; Yuan, Y.J.; Guo, Z.X. Aqueous extract of Salvia miltiorrhiza attenuates increased endothelial permeability induced by tumor necrosis factor-alpha. Int. Immunopharmacol. 2005, 5, 1641–1651. [Google Scholar] [CrossRef]
- Razali, N.N.M.; Ng, C.T.; Fong, L.Y. Cardiovascular protective effects of Centella asiatica and its triterpenes: A review. Planta Medica 2019, 85, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Gnanapragasam, A.; Ebenezar, K.K.; Sathish, V.; Govindaraju, P.; Devaki, T. Protective effect of Centella asiatica on antioxidant tissue defense system against adriamycin induced cardiomyopathy in rats. Life Sci. 2004, 76, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Belcaro, G.; Dugall, M.; Hosoi, M.; Ippolito, E.; Cesarone, M.; Luzzi, R.; Cornelli, U.; Ledda, A. Pycnogenol® and Centella asiatica for asymptomatic atherosclerosis progression. Int. Angiol. 2014, 33, 20–26. [Google Scholar]
- Si, L.; Xu, J.; Yi, C.; Xu, X.; Wang, F.; Gu, W.; Zhang, Y.; Wang, X. Asiatic acid attenuates cardiac hypertrophy by blocking transforming growth factor-β1-mediated hypertrophic signaling in vitro and in vivo. Int. J. Mol. Med. 2014, 34, 499–506. [Google Scholar] [CrossRef]
- Xu, X.; Si, L.; Xu, J.; Yi, C.; Wang, F.; Gu, W.; Zhang, Y.; Wang, X. Asiatic acid inhibits cardiac hypertrophy by blocking interleukin-1β-activated nuclear factor-κB signaling in vitro and in vivo. J. Thorac. Dis. 2015, 7, 1787. [Google Scholar] [PubMed]
- Ma, Z.G.; Dai, J.; Wei, W.Y.; Zhang, W.B.; Xu, S.C.; Liao, H.H.; Yang, Z.; Tang, Q.Z. Asiatic acid protects against cardiac hypertrophy through activating AMPKα signalling pathway. Int. J. Biol. Sci. 2016, 12, 861. [Google Scholar] [CrossRef]
- Huo, L.; Shi, W.; Chong, L.; Wang, J.; Zhang, K.; Li, Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp. Ther. Med. 2016, 11, 57–64. [Google Scholar] [CrossRef]
- Bunbupha, S.; Pakdeechote, P.; Kukongviriyapan, U.; Prachaney, P.; Kukongviriyapan, V. Asiatic acid reduces blood pressure by enhancing nitric oxide bioavailability with modulation of eNOS and p47phox expression in L-NAME-induced hypertensive rats. Phytother. Res. 2014, 28, 1506–1512. [Google Scholar] [CrossRef]
- Pakdeechote, P.; Bunbupha, S.; Kukongviriyapan, U.; Prachaney, P.; Khrisanapant, W.; Kukongviriyapan, V. Asiatic acid alleviates hemodynamic and metabolic alterations via restoring eNOS/iNOS expression, oxidative stress, and inflammation in diet-induced metabolic syndrome rats. Nutrients 2014, 6, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Maneesai, P.; Bunbupha, S.; Kukongviriyapan, U.; Prachaney, P.; Tangsucharit, P.; Kukongviriyapan, V.; Pakdeechote, P. Asiatic acid attenuates renin-angiotensin system activation and improves vascular function in high-carbohydrate, high-fat diet fed rats. BMC Complement. Altern. Med. 2016, 16, 123. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cai, X.; Wang, W.; Jin, Y.; Chen, M.; Huang, X.; Zhu, X.; Wang, L. Effect of asiaticoside on endothelial cells in hypoxia-induced pulmonary hypertension. Mol. Med. Rep. 2018, 17, 2893–2900. [Google Scholar] [CrossRef]
- Bian, G.X.; Li, G.G.; Yang, Y.; Liu, R.T.; Ren, J.P.; Wen, L.Q.; Guo, S.M.; Lu, Q.J. Madecassoside reduces ischemia-reperfusion injury on regional ischemia induced heart infarction in rat. Biol. Pharm. Bull. 2008, 31, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Li, X.Q.; Zhang, X.N.; Hou, Y.; Zeng, A.G.; Xie, Y.H.; Wang, S.W. Madecassoside suppresses LPS-induced TNF-α production in cardiomyocytes through inhibition of ERK, p38, and NF-κB activity. Int. Immunopharmacol. 2010, 10, 723–729. [Google Scholar] [CrossRef]
- Satake, T.; Kamiya, K.; An, Y.; Oishi, T.; Yamamoto, J. The anti-thrombotic active constituents from Centella asiatica. Biol. Pharm. Bull. 2007, 30, 935–940. [Google Scholar] [CrossRef]
- Kim, N.D.; Kang, S.Y.; Kim, M.J.; Park, J.H.; Schini-Kerth, V.B. The ginsenoside Rg3 evokes endothelium-independent relaxation in rat aortic rings: Role of K+ channels. Eur. J. Pharmacol. 1999, 367, 51–57. [Google Scholar] [CrossRef]
- Toda, N.; Ayajiki, K.; Fujioka, H.; Okamura, T. Ginsenoside potentiates NO-mediated neurogenic vasodilatation of monkey cerebral arteries. J. Ethnopharmacol. 2001, 76, 109–113. [Google Scholar] [CrossRef]
- Hien, T.T.; Kim, N.D.; Pokharel, Y.R.; Oh, S.J.; Lee, M.Y.; Kang, K.W. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase. Toxicol. Appl. Pharmacol. 2010, 246, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Persson, I.A.L.; Dong, L.; Persson, K. Effect of Panax ginseng extract (G115) on angiotensin-converting enzyme (ACE) activity and nitric oxide (NO) production. J. Ethnopharmacol. 2006, 105, 321–325. [Google Scholar] [CrossRef]
- Keum, Y.S.; Han, S.S.; Chun, K.S.; Park, K.K.; Park, J.H.; Lee, S.K.; Surh, Y.J. Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutat. Res. 2003, 523–524, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M.; Kim, S.D.; Park, M.H.; Cho, J.Y.; Park, H.J.; Seo, G.S.; Rhee, M.H. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: Critical roles of ERK2 and cAMP. J. Pharm. Pharmacol. 2008, 60, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Soltani, R.; Zolghadr, M.; Keshvari, M.; Sarrafzadegan, N. Evaluation of the effects of roselle (Hibiscus sabdariffa L.) on oxidative stress and serum levels of lipids, insulin and hs-CRP in adult patients with metabolic syndrome: A double-blind placebo-controlled clinical trial. J. Complement. Integr. Med. 2016, 13, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Khongrum, J.; Yingthongchai, P.; Boonyapranai, K.; Wongtanasarasin, W.; Donrung, N.; Sukketsiri, W.; Prachansuwan, A.; Chonpathompikunlert, P. Antidyslipidemic, Antioxidant, and Anti-inflammatory Effects of Jelly Drink Containing Polyphenol Rich Roselle Calyces Extract and Passion Fruit Juice with Pulp in Adults with Dyslipidemia: A Randomized, Double-Blind, Placebo-Controlled Trial. Oxidative Med. Cell. Longev. 2022, 2022, 4631983. [Google Scholar] [CrossRef] [PubMed]
- Elkafrawy, N.; Younes, K.; Naguib, A.; Badr, H.; Kamal Zewain, S.; Kamel, M.; Raoof, G.F.A.; MEl-Desoky, A.; Mohamed, S. Antihypertensive efficacy and safety of a standardized herbal medicinal product of Hibiscus sabdariffa and Olea europaea extracts (NW Roselle): A phase-II, randomized, double-blind, captopril-controlled clinical trial. Phytother. Res. 2020, 34, 3379–3387. [Google Scholar] [CrossRef]
- Mozaffari-Khosravi, H.; Jalali-Khanabadi, B.A.; Afkhami-Ardekani, M.; Fatehi, F.; Noori-Shadkam, M. The effects of sour tea (Hibiscus sabdariffa) on hypertension in patients with type II diabetes. J. Hum. Hypertens 2009, 23, 48–54. [Google Scholar] [CrossRef]
- Al-Shafei, A.I.; El-Gendy, O.A. Effects of Roselle on arterial pulse pressure and left ventricular hypertrophy in hyper-tensive patients. Saudi Med. J. 2013, 34, 1248–1254. [Google Scholar]
- Anggraini, S.S.; Nur, S.A.; Morika, H.D.; Dewi, R.I.S. October. Rosella flower tea on blood pressure reduction in hypertension patients. In Proceedings of the International Conference Syedza Saintika, Padang, Indonesia, 1 October 2020; Volume 1. [Google Scholar]
- Abubakar, S.M.; Ukeyima, M.T.; Spencer, J.P.; Lovegrove, J.A. Acute effects of Hibiscus sabdariffa calyces on postprandial blood pressure, vascular function, blood lipids, biomarkers of insulin resistance and inflammation in humans. Nutrients 2019, 11, 341. [Google Scholar] [CrossRef]
- Mansour, S.M.; Bahgat, A.K.; El-Khatib, A.S.; Khayyal, M.T. Ginkgo biloba extract (EGb 761) normalizes hypertension in 2K, 1C hypertensive rats: Role of antioxidant mechanisms, ACE inhibiting activity and improvement of endothelial dysfunction. Phytomedicine 2011, 18, 641–647. [Google Scholar] [CrossRef]
- Mesquita, T.R.; De Jesus, I.C.; Dos Santos, J.F.; De Almeida, G.K.; De Vasconcelos, C.M.; Guatimosim, S.; Macedo, F.N.; Dos Santos, R.V.; de Menezes-Filho, J.E.; Miguel-dos-Santos, R.; et al. Cardioprotective action of Ginkgo biloba extract against sustained β-adrenergic stimulation occurs via activation of M2/NO pathway. Front. Pharmacol. 2017, 8, 220. [Google Scholar] [CrossRef]
- Liou, C.J.; Lai, X.Y.; Chen, Y.L.; Wang, C.L.; Wei, C.H.; Huang, W.C. Ginkgolide C suppresses adipogenesis in 3T3-L1 adipocytes via the AMPK signaling pathway. Evid.-Based Complement. Altern. Med. 2015, 2015, 298635. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Yang, X.; Zhang, L.; Ansari, I.A.; Khan, M.S.; Han, S.; Feng, Y. Ginkgolide B ameliorates oxidized low-density lipoprotein-induced endothelial dysfunction via modulating Lectin-like ox-LDL-receptor-1 and NADPH oxidase 4 expression and inflammatory cascades. Phytother. Res. 2018, 32, 2417–2427. [Google Scholar] [CrossRef] [PubMed]
- Akiba, S.; Yamaguchi, H.; Kumazawa, S.; Oka, M.; Sato, T. Suppression of oxidized LDL-induced PDGF receptor beta activation by Ginkgo biloba extract reduces MMP-1 production in coronary smooth muscle cells. J. Atheroscler. Thromb. 2007, 14, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.Y.; Chen, Y.H.; Chen, Y.L.; Wu, T.C.; Li, C.Y.; Chen, J.W.; Lin, S.J. Ginkgo biloba extract inhibits endotoxin-induced human aortic smooth muscle cell proliferation via suppression of toll-like receptor 4 expression and NADPH oxidase activation. J. Agric. Food Chem. 2007, 55, 1977–1984. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Khanna, D. Green tea catechins: Defensive role in cardiovascular disorders. Chin. J. Nat. Med. 2013, 11, 345–353. [Google Scholar] [CrossRef]
- Vinson, J.A.; Jang, J.; Dabbagh, Y.A.; Serry, M.M.; Cai, S. Plant polyphenols exhibit lipoprotein-bound antioxidant activity using an in vitro oxidation model for heart disease. J. Agric. Food Chem. 1995, 43, 2798–2799. [Google Scholar] [CrossRef]
- Yang, F.; Oz, H.S.; Barve, S.; De Villiers, W.J.; McClain, C.J.; Varilek, G.W. The green tea polyphenol (−)-epigallocatechin-3-gallate blocks nuclear factor-κB activation by inhibiting IκB kinase activity in the intestinal epithelial cell line IEC-6. Mol. Pharmacol. 2001, 60, 528–533. [Google Scholar]
- Lee, W.; Min, W.K.; Chun, S.; Lee, Y.W.; Park, H.; Lee, D.H.; Lee, Y.K.; Son, J.E. Long-term effects of green tea ingestion on atherosclerotic biological markers in smokers. Clin. Biochem. 2005, 38, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Wessler, S.; Follmann, E.; Michaelis, W.; Düsterhöft, T.; Baumann, G.; Stangl, K.; Stangl, V. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J. Biol. Chem. 2004, 279, 6190–6195. [Google Scholar] [CrossRef]
- Potenza, M.A.; Marasciulo, F.L.; Tarquinio, M.; Tiravanti, E.; Colantuono, G.; Federici, A.; Kim, J.A.; Quon, M.J.; Montagnani, M. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am. J. Physiol.-Endocrinol. Metab. 2007, 292, E1378–E1387. [Google Scholar] [CrossRef]
- Babu, P.V.; Liu, D. Green tea catechins and cardiovascular health: An update. Curr. Med. Chem. 2008, 15, 1840–1850. [Google Scholar] [CrossRef] [PubMed]
- Schiffrin, E.L. A critical review of the role of endothelial factors in the pathogenesis of hypertension. J. Cardiovasc. Pharmacol. 2001, 38, S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S. Terminalia arjuna Wight and Arn.—A useful drug for cardiovascular disorders. J. Ethnopharmacol. 2007, 1, 114–129. [Google Scholar]
- Bhatia, J.; Bhattacharya, S.K.; Mahajan, P.; Dwivedi, S. Effect of Terminalia arjuna on coronary flow—An experimental study. Indian J. Pharmacol. 1998, 30, 118. [Google Scholar]
- Takahashi, S.; Tanaka, H.; Hano, Y.; Ito, K.; Nomura, T.; Shigenobu, K. Hypotensive effect in rats of hydrophilic extract from Terminalia arjuna containing tannin-related compounds. Phytother. Res. Int. J. Devoted Med. Sci. Res. Plants Plant Prod. 1997, 11, 424–427. [Google Scholar]
- Gauthaman, K.; Mohamed Saleem, T.S.; Ravi, V.; Patel, S.S.; Niranjali, S.; Devaraj, R. Alcoholic extract of Terminalia arjuna protects rabbit heart against ischemic-reperfusion injury: Role of antioxidant enzymes and heat shock protein. World Acad. Sci. Eng. Technol. 2008, 18, 488–498. [Google Scholar]
- Parveen, A.; Babbar, R.; Agarwal, S.; Kotwani, A.; Fahim, M. Mechanistic clues in the cardioprotective effect of Terminalia arjuna bark extract in isoproterenol-induced chronic heart failure in rats. Cardiovasc. Toxicol. 2011, 11, 48–57. [Google Scholar] [CrossRef]
- Mythili, P.; Parameswari, C.S.; Dayana, J. Phytochemical analysis of the bark extract of Terminalia arjuna and its cardioprotective effect. Indian J. Innov. Dev. 2012, 1, 40–42. [Google Scholar]
- Kumar, S.; Enjamoori, R.; Jaiswal, A.; Ray, R.; Seth, S.; Maulik, S.K. Catecholamine-induced myocardial fibrosis and oxidative stress is attenuated by Terminalia arjuna (Roxb.). J. Pharm. Pharmacol. 2009, 61, 1529–1536. [Google Scholar] [CrossRef]
- Maulik, S.K.; Talwar, K.K. Therapeutic potential of Terminalia arjuna in cardiovascular disorders. Am. J. Cardiovasc. Drugs 2012, 12, 157–163. [Google Scholar] [CrossRef]
- Dwivedi, S.; Agarwal, M.P. Antianginal and cardioprotective effects of Terminalia arjuna, an indigenous drug, in coronary artery disease. J. Assoc. Physicians India 1994, 42, 287–289. [Google Scholar] [PubMed]
- Antani, J.A.; Gandhi, S.; Antani, N.J. Terminalia arjuna in congestive heart failure (Abstract). J. Assoc. Physicians India 1991, 39, 801. [Google Scholar]
- Dwivedi, S.; Aggarwal, A.; Agarwal, M.P.; Rajpal, S. Role of Terminalia arjuna in ischaemic mitral regurgitation. Int. J. Cardiol. 2005, 100, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Shamim, A.; Mahmood, T.; Siddiqui, H.H.; Bagga, P.; Roy, S. Effect of Tinospora cordifolia (Guduchi) root extract on Cardiotoxicity in streptozotocin induced diabetic rats. Asian J. Biomed. Pharmal. Sci. 2015, 5, 12–19. [Google Scholar] [CrossRef]
- Rao, P.R.; Kumar, V.K.; Viswanath, R.K.; Subbaraju, G.V. Cardioprotective activity of alcoholic extract of Tinospora cordifolia in ischemia-reperfusion induced myocardial infarction in rats. Biol. Pharm. Bull. 2005, 28, 2319–2322. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Kishore, K.; Sharma, D.; Srinivasan, B.P.; Agarwal, S.S.; Sharma, A.; Singh, S.K.; Gaur, S.; Jatav, V.S. Cardioprotective activity of alcoholic extract of Tinospora cordifolia (Wild.) Miers in calcium chloride-induced cardiac arrhythmia in rats. Biomed. Res. 2011, 25, 280–286. [Google Scholar] [CrossRef]
- Stanely, M.; Prince, P.; Menon, V.P.; Gunasekaran, G. Hypolipidaemic action of Tinospora cordifolia roots in alloxan diabetic rats. J. Ethnopharmacol. 1999, 64, 53–57. [Google Scholar]
- Priya, L.B.; Baskaran, R.; Elangovan, P.; Dhivya, V.; Huang, C.Y.; Padma, V.V. Tinospora cordifolia extract attenuates cadmium-induced biochemical and histopathological alterations in the heart of male Wistar rats. Biomed. Pharmacother. 2017, 87, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Kesarwani, N.; Azmi, L. Evaluation of cardioprotective effect of Tinospora cordifolia against isoprenaline induced myocardial infarction in rats. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 543–555. [Google Scholar]
- Gayathri, V.; Ananthi, S.; Chandronitha, C.; Ramakrishnan, G.; Lakshmisundaram, R.; Vasanthi, H.R. Cardioprotective effect of Nerium oleander flower against isoproterenol-induced myocardial oxidative stress in experimental rats. J. Cardiovasc. Pharmacol. Ther. 2011, 16, 96–104. [Google Scholar] [CrossRef]
- Hitit, M.; Corum, O.; Corum, D.D.; Donmez, H.; Cetin, G.; Dik, B.; Er, A. A cardioprotective role of Nerium oleander with the expression of hypoxia inducible factor 2A mRNA by increasing antioxidant enzymes in rat heart tissue. Acta Sci. Vet. 2018, 46, 1560. [Google Scholar] [CrossRef]
- Soleti, R.; Coué, M.; Trenteseaux, C.; Hilairet, G.; Fizanne, L.; Kasbi-Chadli, F.; Mallegol, P.; Chaigneau, J.; Boursier, J.; Krempf, M.; et al. Carrot Supplementation Improves Blood Pressure and Reduces Aortic Root Lesions in an Atherosclerosis-Prone Genetic Mouse Model. Nutrients 2021, 13, 1181. [Google Scholar] [CrossRef] [PubMed]
- Arscott, S.A.; Tanumihardjo, S.A. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr. Rev. Food Sci. Food Saf. 2010, 9, 223–239. [Google Scholar] [CrossRef]
- Poudyal, H.; Panchal, S.; Brown, L. Comparison of purple carrot juice and beta-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. Br. J. Nutr. 2010, 104, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, G.; Ponmurugan, P.; Sathiyavathi, M.; Vadivukkarasi, S.; Sengottuvelu, S. Cardioprotective activity of Amaranthus viridis Linn: Effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats. Int. J. Cardiol. 2013, 165, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, N.; Asgary, S.; Setorki, M. Lipid lowering by hydroalcoholic extracts of Amaranthus caudatus L. induces regression of rabbits atherosclerotic lesions. Lipids Health Dis. 2011, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, N.; Asgary, S.; Setorki, M. The effects of concurrent hydroalcoholic extract of Amaranthus caudatus L, Hypericum perforatum L. of fatty streak formation in hypercholesterolemic animals. Afr. J. Pharm. Pharmacol. 2011, 5, 1911–1919. [Google Scholar]
- Faponle, A.S.; Atunnise, A.; Adegbesan, B.O.; Ogunlabi, O.O.; Odufuwa, K.T.; Ajani, E.O. Separate and co-administration of Amaranthus spinosus and vitamin C modulates cardiovascular disease risk in high fat diet-fed experimental rats. J. Pharmacogn. Phytother. 2015, 7, 27–34. [Google Scholar]
- Soares, R.A.M.; Mendonça, S.; De Castro, L.Í.A.; Menezes, A.C.C.C.C.; Arêas, J.A.G. Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity. Int. J. Mol. Sci. 2015, 16, 4150–4160. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Rodríguez, A.; Milán-Carrillo, J.; Dia, V.P.; Reyes-Moreno, C.; González de Mejía, E. Pepsin-pancreatin protein hydrolysates from extruded amaranth inhibit markers of atherosclerosis in LPS-induced THP-1 macrophages-like human cells by reducing expression of proteins in LOX-1 signaling pathway. Proteome Sci. 2014, 12, 1–13. [Google Scholar] [CrossRef]
- Cao, Z.; Li, Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: Protection against oxidative and electrophilic injury. Eur. J. Pharmacol. 2004, 489, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Spanier, G.; Xu, H.; Xia, N.; Tobias, S.; Deng, S.; Wojnowski, L.; Forstermann, U.; Li, H. Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J. Physiol. Pharmacol. 2009, 60, 111–116. [Google Scholar]
- Shigematsu, S.; Ishida, S.; Hara, M.; Takahashi, N.; Yoshimatsu, H.; Sakata, T.; Korthuis, R.J. Resveratrol, a red wine constituent polyphenol, prevents superoxide-dependent inflammatory responses induced by ischemia/reperfusion, platelet-activating factor, or oxidants. Free Radic. Biol. Med. 2003, 34, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Ungvari, Z.; Zhang, C. Resveratrol improves endothelial function: Role of TNFα and vascular oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Do, G.M.; Kwon, E.Y.; Kim, H.J.; Jeon, S.M.; Ha, T.Y.; Park, T.; Choi, M.S. Long-term effects of resveratrol supplementation on suppression of atherogenic lesion formation and cholesterol synthesis in apo E-deficient mice. Biochem. Biophys. Res. Commun. 2008, 374, 55–59. [Google Scholar] [CrossRef]
- Lin, M.T.; Yen, M.L.; Lin, C.Y.; Kuo, M.L. Inhibition of vascular endothelial growth factor induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol. Pharmacol. 2003, 64, 1029–1036. [Google Scholar] [CrossRef]
- Arbiser, J.L.; Petros, J.; Klafter, R.; Govindajaran, B.; McLaughlin, E.R.; Brown, L.F.; Cohen, C.; Moses, M.; Kilroy, S.; Arnold, R.S.; et al. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA 2002, 99, 715–720. [Google Scholar] [CrossRef]
- Ushio-Fukai, M.; Tang, Y.; Fukai, T.; Dikalov, S.I.; Ma, Y.; Fujimoto, M.; Quinn, M.T.; Pagano, P.J.; Johnson, C.; Alexander, R.W. Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor induced signaling and angiogenesis. Circ. Res. 2002, 91, 1160–1167. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Y.; Yan, F.; Dong, M.; Ren, Y. Research progress of quercetin in cardiovascular disease. Front. Cardiovasc. Med. 2023, 10, 1203713. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Song, J.; Wang, R.; Gao, L.; Zhang, L.; Fang, L.; Lu, Y.; Du, G. Total flavonoids from Anchusa italica Retz. Improve cardiac function and attenuate cardiac remodeling post myocardial infarction in mice. J. Ethnopharmacol. 2020, 257, 112887. [Google Scholar] [CrossRef]
- Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, Ș.C.; Răchișan, A.L.; Negrean, V.; Perné, M.G.; Donca, V.I.; Alexescu, T.G.; Para, I.; et al. The effects of flavonoids in cardiovascular diseases. Molecules 2020, 25, 4320. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shang, P.; Li, D. Luteolin: A Flavonoid that Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Front. Pharmacol. 2017, 8, 692. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Li, D.; Pan, H.; Chen, D.; Qi, L.; Zhang, R.; Sun, H. Luteolin inhibits apoptosis and improves cardiomyocyte contractile function through the PI3K/Akt pathway in simulated ischemia/reperfusion. Pharmacology 2011, 88, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.; Hua, F.; Liu, X.; Ma, J.; McMullen, J.R.; Shioi, T.; Izumo, S.; Kelley, J.; Gao, X.; Browder, W.; et al. Lipopolysaccharide-induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent mechanism. Cardiovasc. Res. 2008, 78, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Xu, H.-T.; Yu, J.-J.; Gao, J.-L.; Lei, J.; Yin, Q.-S.; Li, B.; Pang, M.-X.; Su, M.-X.; Mi, W.-J.; et al. Luteolin ameliorates hypertensive vascular remodeling through inhibiting the proliferation and migration of vascular smooth muscle cells. Evid. Based Complement. Altern. Med. 2015, 2015, 364876. [Google Scholar] [CrossRef] [PubMed]
- Ikemura, M.; Sasaki, Y.; Giddings, J.C.; Yamamoto, J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. Phytother. Res. 2012, 26, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Jokura, H.; Hashizume, K.; Ominami, H.; Shibuya, Y.; Suzuki, A.; Hase, T.; Shimotoyodome, A. Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-30 -O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Funct. 2013, 4, 1346. [Google Scholar] [CrossRef]
- Liu, Y.; Niu, L.; Cui, L.; Hou, X.; Li, J.; Zhang, X.; Zhang, M. Hesperetin inhibits rat coronary constriction by inhibiting Ca2+ influx and enhancing voltage-gated K+ channel currents of the myocytes. Eur. J. Pharmacol. 2014, 735, 193–201. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Q.; Liu, Y.Y.; Sun, K.; Fan, J.Y.; Wang, C.S.; Han, J.Y. Inhibitory effect of caffeic acid on ADP-induced thrombus formation and platelet activation involves mitogen-activated protein kinases. Sci. Rep. 2015, 5, 13824. [Google Scholar] [CrossRef]
- Baeza, G.; Bachmair, E.-M.; Wood, S.; Mateos, R.; Bravo, L.; De Roos, B.J.F. The colonic metabolites dihydrocaffeic acid and dihydroferulic acid are more effective inhibitors of in vitro platelet activation than their phenolic precursors. Food Funct. 2017, 8, 1333–1342. [Google Scholar] [CrossRef]
- Hong, Q.; Ma, Z.-C.; Huang, H.; Wang, Y.-G.; Tan, H.-L.; Xiao, C.-R.; Liang, Q.D.; Zhang, H.T.; Gao, Y. Antithrombotic activities of ferulic acid via intracellular cyclic nucleotide signaling. Eur. J. Pharmacol. 2016, 777, 1–8. [Google Scholar] [CrossRef]
- Choi, J.H.; Park, J.K.; Kim, K.M.; Lee, H.J.; Kim, S. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J. Biochem. Mol. Toxicol. 2018, 32, e22004. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, W.-F.; Lin, K.-H.; Hsieh, C.-Y.; Chou, D.-S.; Lin, L.-J.; Sheu, J.-R.; Chang, C.-C. Novel bioactivity of ellagic acid in inhibiting human platelet activation. Evid. Based Complement. Altern. Med. 2013, 2013, 595128. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhuri, P.K. Structural characteristics, bioavailability and cardioprotective potential of saponins. Integr. Med. Res. 2018, 7, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Haleagrahara, N.; Varkkey, J.; Chakravarthi, S. Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats. Int. J. Mol. Sci. 2011, 12, 7100–7113. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, Y.; Tian, J.; Xing, Y.; Zhu, H.; Shen, J. Long-term oral Asperosaponin VI attenuates cardiac dysfunction, myocardial fibrosis in a rat model of chronic myocardial infarction. Food Chem. Toxicol. 2012, 50, 1432–1438. [Google Scholar] [CrossRef]
- Wang, M.; Meng, X.B.; Yu, Y.L.; Sun, G.B.; Xu, X.D.; Zhang, X.P.; Dong, X.; Ye, J.X.; Xu, H.B.; Sun, Y.F.; et al. Elatoside C protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes through the reduction of endoplasmic reticulum stress partially depending on STAT3 activation. Apoptosis 2014, 19, 1727–1735. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Yang, S.-J. Tribulosin protects rat hearts from ischemia/reperfusion injury. Acta Pharmacol. Sin. 2010, 31, 671–678. [Google Scholar] [CrossRef]
- Wu, J.; Yang, G.; Zhu, W.; Wen, W.; Zhang, F.; Yuan, J.; An, L. Anti-atherosclerotic activity of platycodin D derived from roots of Platycodon grandiflorum in human endothelial cells. Biol. Pharm. Bull. 2012, 35, 1216–1221. [Google Scholar] [CrossRef]
- Zhang, R.; Fang, W.; Han, D.; Sha, L.; Wei, J.; Liu, L.; Li, Y. Clematichinenoside attenuates myocardial infarction in ischemia/reperfusion injury both in vivo and in vitro. Planta Medica 2013, 79, 1289–1297. [Google Scholar] [CrossRef]
- Liao, Z.; Yin, D.; Wang, W.; Zeng, G.; Liu, D.; Chen, H.; Huang, Q.; He, M. Cardioprotective effect of sasanquasaponin preconditioning via bradykinin-NO pathway in isolated rat heart. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2009, 23, 1146–1153. [Google Scholar] [CrossRef]
- Qian, J.; Jiang, F.; Wang, B.; Yu, Y.; Zhang, X.; Yin, Z.; Liu, C. Ophiopogonin D prevents H2O2-induced injury in primary human umbilical vein endothelial cells. J. Ethnopharmacol. 2010, 128, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Yu, X.; Qu, S.; Xu, H.; Sui, D. Acanthopanax senticosides B ameliorates oxidative damage induced by hydrogen peroxide in cultured neonatal rat cardiomyocytes. Eur. J. Pharmacol. 2010, 627, 209–215. [Google Scholar] [CrossRef]
- Lai, W.; Wu, Z.; Lin, H.; Li, T.; Sun, L.; Chai, Y.; Chen, W. Anti-ischemia steroidal saponins from the seeds of Allium fistulosum. J. Nat. Prod. 2010, 73, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Choi, R.C.; Li, J.; Bi, C.W.; Zang, L.; Liu, Z.; Dong, T.T.; Bi, K.; Tsim, K.W. Antihyperlipidemic effect of protodioscin, an active ingredient isolated from the rhizomes of Dioscorea nipponica. Planta Medica 2010, 76, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Nandy, S.; Mukherjee, A.; Bhattacharyya, A. Cardioprotective plant alkaloids: Ethnopharmacology, structure activity relationship and synthetic analogues. In Cardiovascular Diseases; Bentham Science: Sharjah, United Arab Emirates, 2017. [Google Scholar]
Cardiovascular Condition | Primary Causes | Key Symptoms | Potential Complications | Management Options | References |
---|---|---|---|---|---|
Coronary Artery Disease (CAD) | Atherosclerosis (plaque buildup in coronary arteries) | Chest pain (angina), shortness of breath, fatigue | Myocardial infarction (heart attack), heart failure (HF), arrhythmias | Lifestyle changes, medications (statins, beta blockers), angioplasty, coronary artery bypass grafting (CABG) | [11,12,13,14] |
Peripheral Arterial Disease (PAD) | Atherosclerosis affecting arteries in the limbs, typically the legs | Leg pain while walking (claudication), numbness, weakness | Critical limb ischemia, non-healing wounds, gangrene, amputation, increased risk of heart attack and stroke | Lifestyle changes, medications (antiplatelets, statins), revascularization procedures (angioplasty, bypass surgery) | [15,16] |
Deep Vein Thrombosis (DVT) and Pulmonary Embolism (PE) | Formation of blood clots in deep veins, typically in the legs; clot dislodgment causing blockage in pulmonary arteries | Pain, swelling, redness, warmth in the affected limb (DVT); sudden shortness of breath, chest pain, rapid heart rate (PE) | Post-thrombotic syndrome, pulmonary hypertension, right ventricular failure, death | Anticoagulants, thrombolytics, compression stockings, surgical interventions (in severe cases) | [17,18] |
Cardiomyopathies | Genetic factors, viral infections, alcohol abuse, certain medications, and other underlying diseases (e.g., hypertension, diabetes) | Fatigue, shortness of breath, swelling of the legs and ankles, palpitations | Heart failure, arrhythmias, sudden cardiac death | Medications (beta blockers, ACE inhibitors), lifestyle changes, devices (pacemaker, ICD), heart transplantation in severe cases | [19,20] |
Cerebrovascular Diseases (Stroke) | Ischemic stroke: blockage of blood vessels in the brain; hemorrhagic stroke: rupture of blood vessels in the brain | Sudden weakness or numbness, confusion, difficulty speaking, vision problems, severe headache | Long-term physical and cognitive impairments, emotional disturbances, recurrent strokes | Thrombolytic therapy (ischemic stroke), surgical interventions (hemorrhagic stroke), rehabilitation and lifestyle modifications | [21] |
Rheumatic Heart Disease (RHD) | Chronic valve damage following acute rheumatic fever, often caused by streptococcal infections in childhood | Shortness of breath, chest pain, fatigue, swelling in legs and abdomen | Atrial fibrillation, infective endocarditis, heart failure, stroke | Long-term antibiotics, medications for heart failure, valve repair or replacement surgery | [22,23] |
Congenital Heart Defects (CHDs) | Genetic factors, maternal health conditions, and environmental exposures during pregnancy | Cyanosis, heart murmurs, shortness of breath, poor growth and development in children | Heart failure, arrhythmias, impaired growth and development, respiratory infections | Surgical repair or reconstruction, catheter-based interventions, long-term monitoring and medical care | [24,25,26,27,28,29] |
Myocardial Infarction (MI) | Blockage of blood flow to the heart muscle due to a blood clot, often from a ruptured atherosclerotic plaque in a coronary artery | Severe chest pain, shortness of breath, sweating, nausea, light-headedness | Heart failure, arrhythmias, increased risk of recurrent MI, impaired quality of life | Immediate revascularization (angioplasty, CABG), thrombolytics, antiplatelet and anticoagulant therapy, lifestyle modifications | [30,31,32,33] |
Cardiac Arrhythmias | Structural heart changes, electrolyte imbalances, ischemic heart disease, genetic predispositions | Palpitations, dizziness, fatigue, syncope, chest pain | Stroke (especially in atrial fibrillation), sudden cardiac arrest, heart failure | Medications (antiarrhythmics, anticoagulants), catheter ablation, pacemaker or ICD implantation, lifestyle changes | [34,35,36,37] |
Biomarker | Type | Primary Role/Function | Diagnostic/Prognostic Utility | Associated Conditions | References |
---|---|---|---|---|---|
Cardiac Troponins (cTnI, cTnT) | Protein | Detects myocardial injury, diagnosis of AMI, and monitoring of chronic heart disease | Gold standard for diagnosing MI; elevated levels indicate cardiac muscle damage | AMI, chronic heart conditions, and HF | [38,39,40] |
CK-MB | Enzyme | Detection of reinfarction; differentiation of new vs. ongoing cardiac injury | Useful for detecting reinfarction due to rapid rise and fall; less specific than troponins due to elevation in skeletal muscle injury | AMI, skeletal muscle damage | [41,42,43] |
B-Type Natriuretic Peptide (BNP)/NT-proBNP | Hormone | Differentiation of heart failure (HF) from other causes of dyspnea; monitoring HF severity and treatment | Elevated levels correlate with HF severity; used for diagnosis, prognosis, and monitoring response to therapy, cardiac stress, and ventricular dysfunction | HF, cardiac stress, and ventricular dysfunction | [44,45,46,47,48,49,50] |
Mid-Regional Pro-Atrial Natriuretic Peptide (MR-proANP) | Protein fragment | Diagnosis and risk stratification of HF; assessment of cardiac wall stress and fluid overload | Useful in differentiating HF from other dyspnea causes elevated levels associated with higher risk of hospitalization and mortality | Heart failure | [51,52,53] |
Mid-Regional Pro-Adrenomedullin (MR-proADM) | Protein fragment | Assessment of cardiovascular health, vascular dysfunction, and systemic inflammation | Elevated in response to cardiovascular stress and inflammation. Useful in critical care for early identification of complications, such as sepsis or acute HF | Heart failure, sepsis, systemic inflammation | [54,55,56,57] |
C-Reactive Protein (CRP)/hs-CRP | Protein | General marker of inflammation; assessment of cardiovascular risk. | Useful in assessing the inflammatory component of atherosclerosis. High hs-CRP levels predict future cardiovascular events independent of cholesterol levels | Atherosclerosis, acute coronary syndrome (ACS), HF | [58,59,60] |
Heart-Type Fatty Acid-Binding Protein (H-FABP) | Protein | Reflects myocardial injury and oxidative stress | Early marker for myocardial infarction; assessment of myocardial injury; useful in the early detection of acute coronary syndromes | AMI, ACS | [61,62,63] |
Myeloperoxidase (MPO) | Enzyme | Assessment of inflammation and oxidative stress in cardiovascular diseases, risk stratification in ACS | Elevated MPO levels are linked to plaque instability, endothelial dysfunction, and increased risk of cardiovascular events | ACS, atherosclerosis | [64,65,66,67] |
Myoglobin | Protein | Early diagnosis of MI | Early release into the bloodstream aids in prompt MI diagnosis, monitoring muscle injury | MI, skeletal muscle injury | [68,69,70] |
Ischemia-Modified Albumin (IMA) | Protein | Signals myocardial ischemia | Indicates early ischemic changes before myocardial necrosis; useful for early detection of ACS | ACS, myocardial ischemia | [71,72,73] |
Galectin-3 | Glycoprotein | Involved in inflammation and fibrosis | High levels indicate worse outcomes in HF; aids in assessing disease severity, prognosis, and monitoring response to therapy | Heart failure (HF), cardiac remodeling | [74,75,76,77] |
Copeptin | Peptide | Reflects neurohormonal activation | Provides early diagnostic and prognostic information in ACS and HF; rises rapidly following myocardial injury; useful for early MI detection | Acute myocardial infarction (AMI), heart failure (HF) | [78,79,80] |
Fibroblast Growth Factor 23 (FGF-23) | Hormone | Regulates mineral metabolism and is linked to cardiovascular pathology | Elevated levels predict adverse cardiovascular outcomes, especially in CKD and HF; associated with LV hypertrophy and vascular calcification | Chronic kidney disease (CKD), heart failure (HF) | [81,82,83] |
Growth Differentiation Factor-15 (GDF-15) | Cytokine | Reflects cellular aging and systemic inflammation | Elevated levels are linked to increased cardiovascular risk; provides prognostic information in HF, CAD, and other cardiovascular conditions | HF, CAD, atrial fibrillation | [84,85,86] |
Soluble ST2 (sST2) | IL-1 receptor | Indicator of cardiac stress and remodeling | Elevated levels correlate with worse HF outcomes; valuable for risk stratification and monitoring treatment efficacy | HF, cardiac remodeling | [87,88] |
Endothelin-1 (ET-1) | Peptide | Potent vasoconstrictor involved in regulating vascular tone and blood pressure | Elevated levels are associated with hypertension, HF, and atherosclerosis; contributes to endothelial dysfunction and vascular remodeling | Hypertension, HF, atherosclerosis | [89,90] |
Cardiac Myosin-Binding Protein-C (cMyBP-C) | Protein | Involved in sarcomere function in cardiomyocytes | Emerging biomarker for early diagnosis of myocardial infarction; elevated levels correlate with cardiac injury | Acute myocardial infarction (AMI) | [91] |
Trimethylamine-N-oxide (TMAO) | Amine oxide | Metabolite produced by gut microbiota from dietary choline and carnitine | High levels are associated with an increased risk of cardiovascular events, including atherosclerosis and heart failure | Atherosclerosis, HF | [92] |
Adiponectin | Hormone | Anti-inflammatory adipokine; regulates glucose levels and fatty acid breakdown | Low levels are associated with obesity, insulin resistance, and increased cardiovascular risk; higher levels are cardioprotective | Metabolic syndrome, vascular health | [93,94] |
Interleukin-6 | Cytokine | Pro-inflammatory cytokine | High levels are associated with increased cardiovascular risk and adverse outcomes in HF; marker of systemic inflammation | HF, atherosclerosis | [95,96] |
TNF-α | Cytokine | Key cytokine in systemic inflammation | Elevated levels reflect inflammatory processes in HF and atherosclerosis; potential targets for anti-inflammatory therapies | HF, atherosclerosis | [97,98] |
MicroRNAs (miRNAs) | Nucleotides | Involved in gene regulation during cardiovascular diseases | Specific miRNAs serve as novel biomarkers for the diagnosis and prognosis of AMI, arrhythmia, and HF; provide insights into molecular mechanisms | AMI, arrhythmia, and HF | [99,100,101] |
Homocysteine | Amino acid | Amino acid linked to endothelial dysfunction | Elevated levels are associated with increased cardiovascular risk; contributes to atherosclerosis and thrombus formation | CAD, stroke, PAD | [102] |
Phospholipase A2 (PLA2) | Enzyme | Enzyme involved in inflammation and atherosclerosis | High levels contribute to plaque formation and instability; associated with increased cardiovascular risk and plaque rupture | Atherosclerosis, CAD | [103] |
Oxidized Low-Density Lipoprotein (oxLDL) | Lipoprotein | Marker of oxidative stress and atherosclerosis | Promotes inflammation and plaque formation; high levels indicate increased risk of atherosclerosis and CVD | Atherosclerosis | [104] |
Lipoprotein (a) [Lp(a)] | Lipoprotein | Variant of LDL cholesterol; highly atherogenic | Elevated Lp(a) levels are an independent risk factor for atherosclerosis, myocardial infarction, and stroke | Atherosclerosis, MI, stroke | [105] |
Apolipoproteins (ApoA1, ApoB) | Lipoprotein | Key components of lipoprotein particles; ApoA1 associated with HDL, ApoB with LDL | ApoB/ApoA1 ratio provides a better risk assessment of cardiovascular events than traditional lipid measurements | Atherosclerosis, MI | [106] |
Oxylipins | Lipid mediator | Bioactive lipid mediators valuable biomarkers for detecting and monitoring cardiovascular diseases | Play a role in inflammation, vascular function, platelet aggregation, and leukocyte adhesion | Atherosclerosis, hypertension | [107,108] |
Imaging Modality | Principle | Applications | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Chest X-ray | X-rays | Detect heart enlargement Identify fluid in lungs Diagnose other chest abnormalities | Quick and accessible Cost effective Provides an overview | Limited sensitivity Lacks detailed information about heart structures and function | [109,110] |
Electrocardiogram (ECG) | Electrical activity of the heart | Evaluate heart rate and rhythm Monitor cardiac conditions Diagnose arrhythmias Detect myocardial infarction and identify electrolyte imbalances Assess pacemaker function | Inexpensive Widely available Non-invasive Essential for initial cardiac assessment and monitoring | Limited structural information May require complementary diagnostic tools | [111,112,113,114,115,116,117,118] |
Echocardiography/ Ultrasound | Ultrasound waves | Diagnose heart valve diseases Monitor cardiomyopathies Detect congenital heart defects Assess ischemic heart disease Stress echocardiography 3D echocardiography Contrast-enhanced echocardiography | Non-invasive Real-time imaging No radiation Detailed assessment of heart structure and function | Image quality affected by body habitus and lung interference | [119,120,121,122,123,124,125,126,127,128] |
Computed Tomography (CT) | X-rays | Assess congenital heart defects Characterize cardiac tumors Detect aortic aneurysms Coronary artery disease (CTA) Coronary calcium scan CT pulmonary angiography —CT FFR | High-resolution images Quick and suitable for emergencies Comprehensive anatomical evaluation | Exposure to ionizing radiation The use of contrast agents may be problematic for certain patients | [129,130,131,132,133,134,135,136,137] |
Positron Emission Tomography (PET) | Radioactive tracers | Evaluate myocardial perfusion Distinguish viable vs. non-viable heart tissue Detect inflammation and infection Hybrid imaging (PET/CT, PET/MRI) Absolute quantification of myocardial blood flow | High sensitivity and specificity Detailed functional information Combines structure and function assessment | Radiation exposure Expensive and limited availability Time consuming and requires specific preparation | [138,139,140,141,142] |
Single-Photon Emission Computed Tomography (SPECT) | Gamma rays | Assess myocardial blood flow Diagnose coronary artery disease Viability assessment post-myocardial infarction Evaluate left ventricular function Gated SPECT SPECT/CT hybrid imaging | Provides crucial insights into myocardial blood flow and function Combines perfusion and structural information | Lower spatial resolution compared to PET Time consuming and involves radioactive tracers | [143,144,145,146,147,148] |
Magnetic Resonance Imaging (MRI) | Magnetic fields and radio waves | Diagnose cardiomyopathies Assess congenital heart defects Identify myocardial infarction and scar tissue Detect myocarditis and pericarditis Evaluate valvular diseases Stress cardiac MRI T1 Mapping Late Gadolinium Enhancement (LGE) | High-resolution images No ionizing radiation Comprehensive functional and anatomical evaluation | Expensive Limited availability Lengthy procedure Contraindications for certain implants and severe claustrophobia | [149,150,151,152,153,154,155,156,157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netala, V.R.; Teertam, S.K.; Li, H.; Zhang, Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells 2024, 13, 1471. https://doi.org/10.3390/cells13171471
Netala VR, Teertam SK, Li H, Zhang Z. A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells. 2024; 13(17):1471. https://doi.org/10.3390/cells13171471
Chicago/Turabian StyleNetala, Vasudeva Reddy, Sireesh Kumar Teertam, Huizhen Li, and Zhijun Zhang. 2024. "A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies" Cells 13, no. 17: 1471. https://doi.org/10.3390/cells13171471
APA StyleNetala, V. R., Teertam, S. K., Li, H., & Zhang, Z. (2024). A Comprehensive Review of Cardiovascular Disease Management: Cardiac Biomarkers, Imaging Modalities, Pharmacotherapy, Surgical Interventions, and Herbal Remedies. Cells, 13(17), 1471. https://doi.org/10.3390/cells13171471