Buckling Resistance and Its Effect on the Gas Barrier of Composite Coating Layers Based on Polyvinyl Alcohol and Montmorillonite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Lacquer Preparation
2.1.2. Sheet Coating
2.2. Methods
2.2.1. Thickness Measurement
2.2.2. Tensile Test
2.2.3. Stereo Microscopy
2.2.4. Differential Interference Contrast Microscopy
2.2.5. Scanning Electron Microscopy
2.2.6. Defined Buckling
2.2.7. Gelbo-Flex Treatment
2.2.8. Helium Permeability Test
2.2.9. Ink Test
3. Results and Discussion
3.1. Tensile Test
3.2. Effect of Coating Layer Thickness
3.2.1. Dry Coating Layer Thicknesses
3.2.2. Light Microscopy with Stereo and Differential Interference Contrast Microscope
3.2.3. Scanning Electron Microscopy
3.2.4. Helium Barrier
3.3. Effect of Fraction of Montmorillonite
3.3.1. Dry Coating Layer Thickness
3.3.2. Light Microscopy with Stereo and Differential Interference Contrast Microscope
3.3.3. Scanning Electron Microscopy
3.3.4. Helium Barrier
3.3.5. Ink Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Effect of Coating Layer Thickness
Appendix A.1. Surface Images of Uncoated Control Films
Appendix A.2. Stereo and Differential Interference Contrast Microscope Images of Coated PET
Appendix A.3. Stereo and Differential Interference Contrast Microscope Images of Coated PE
Appendix A.4. SEM Images of the Coated PET and PE Control Films
Appendix A.5. Helium Permeability Coefficients of Coating Layers
Appendix B. Effect of Formulation
Appendix B.1. Stereo and Differential Interference Contrast Microscope Images of Coated PET
Appendix B.2. Stereo and Differential Interference Contrast Microscope Images of Coated PE
Appendix B.3. SEM Images of the Coated PET and PE Control Films
Appendix B.4. Helium Permeability Coefficients of Coating Layers
Appendix B.5. DIC Microscopy Images of Ink Test
References
- Spada, A.; Conte, A.; Del Nobile, M.A. The influence of shelf life on food waste: A model-based approach by empirical market evidence. J. Clean. Prod. 2018, 172, 3410–3414. [Google Scholar] [CrossRef]
- John, J.M.; Jinap, S.; Hanani, Z.A.N.; Nor-Khaizura, M.A.R.; Samsudin, N.I.P. The effects of different packaging materials, temperatures and water activities to control aflatoxin B1 production by Aspergillus flavus and A. parasiticus in stored peanuts. J. Food Sci. Technol. 2019, 56, 3145–3150. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, M. The Chemistry of Protein Oxidation in Food. Angew. Chem. Int. Ed. 2019, 58, 16742–16763. [Google Scholar] [CrossRef] [PubMed]
- Pasquier, E.; Mattos, B.D.; Koivula, H.; Khakalo, A.; Belgacem, M.N.; Rojas, O.J.; Bras, J. Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging. Acs Appl. Mater. Interfaces 2022, 14, 30236–30245. [Google Scholar] [CrossRef] [PubMed]
- Statista Research Department. Global Market Volume of Polyethylene 2015–2030. 2023. Available online: https://www.statista.com/statistics/1245162/polyethylene-market-volume-worldwide/ (accessed on 17 October 2024).
- Statista Research Department. Annual Production of Plastics Worldwide from 1950 to 2021. 2023. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/#:%E2%88%BC:text=Global%20plastics%20production%20was%20estimated,in%20production%20year%20after%20year (accessed on 17 October 2024).
- Nisticò, R. Polyethylene terephthalate (PET) in the packaging industry. Polym. Test. 2020, 90, 106707. [Google Scholar] [CrossRef]
- Gomes, T.S.; Visconte, L.L.Y.; Pacheco, E.B.A.V. Life Cycle Assessment of Polyethylene Terephthalate Packaging: An Overview. J. Polym. Environ. 2019, 27, 533–548. [Google Scholar] [CrossRef]
- Tamburini, E.; Costa, S.; Summa, D.; Battistella, L.; Fano, E.A.; Castaldelli, G. Plastic (PET) vs bioplastic (PLA) or refillable aluminium bottles—What is the most sustainable choice for drinking water? A life-cycle (LCA) analysis. Environ. Res. 2021, 196, 110974. [Google Scholar] [CrossRef]
- Novák, I.; Popelka, A.; Špitalský, Z.; Krupa, I.; Tavman, S. Polyolefin in Packaging and Food Industry. In Polyolefin Compounds 578 and Materials: Fundamentals and Industrial Applications; Springer International Publishing: Cham, Switzerland, 2016; pp. 181–199. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Geueke, B.; Groh, K.J.; Muncke, J.; Hahladakis, J.N.; Martin, O.V.; Iacovidou, E. Unpacking the complexity of the polyethylene food contact articles value chain: A chemicals perspective. J. Hazard. Mater. 2023, 454, 131422. [Google Scholar] [CrossRef]
- Eriksen, M.; Christiansen, J.; Daugaard, A.; Astrup, T. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Manag. 2019, 96, 75–85. [Google Scholar] [CrossRef]
- Swetha, T.A.; Bora, A.; Mohanrasu, K.; Balaji, P.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging. Int. J. Biol. Macromol. 2023, 234, 123715. [Google Scholar] [CrossRef]
- Aznar, M.; Ubeda, S.; Dreolin, N.; Nerín, C. Determination of non-volatile components of a biodegradable food packaging material based on polyester and polylactic acid (PLA) and its migration to food simulants. J. Chromatogr. 2019, 1583, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mokwena, K.K.; Tang, J. Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Crit. Rev. Food Sci. Nutr. 2012, 52, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.; González-Martínez, C.; Chiralt, A. Antimicrobial PLA-PVA multilayer films containing phenolic compounds. Food Chem. 2022, 375, 131861. [Google Scholar] [CrossRef] [PubMed]
- Moreira, B.R.; Pereira-Júnior, M.A.; Fernandes, K.F.; Batista, K.A. An ecofriendly edible coating using cashew gum polysaccharide and polyvinyl alcohol. Food Biosci. 2020, 37, 100722. [Google Scholar] [CrossRef]
- Razmjoo, F.; Sadeghi, E.; Rouhi, M.; Mohammadi, R.; Noroozi, R.; Safajoo, S. Polyvinyl alcohol—Zedo gum edible film: Physical, mechanical and thermal properties. J. Appl. Polym. Sci. 2021, 138, 49875. [Google Scholar] [CrossRef]
- Kim, S.; Chang, Y. Anti-Salmonella polyvinyl alcohol coating containing a virulent phage PBSE191 and its application on chicken eggshell. Food Res. Int. 2022, 162, 111971. [Google Scholar] [CrossRef]
- Settier-Ramírez, L.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. PVOH/protein blend films embedded with lactic acid bacteria and their antilisterial activity in pasteurized milk. Int. J. Food Microbiol. 2020, 322, 108545. [Google Scholar] [CrossRef]
- Grunlan, J.C.; Grigorian, A.; Hamilton, C.B.; Mehrabi, A.R. Effect of clay concentration on the oxygen permeability and optical properties of a modified poly(vinyl alcohol). J. Appl. Polym. Sci. 2004, 93, 1102–1109. [Google Scholar] [CrossRef]
- Gaume, J.; Taviot-Gueho, C.; Cros, S.; Rivaton, A.; Thérias, S.; Gardette, J.L. Optimization of PVA clay nanocomposite for ultra-barrier multilayer encapsulation of organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 99, 240–249. [Google Scholar] [CrossRef]
- Nyflött, A.; Carlsson, G.; Järnström, L.; Lestelius, M.; Moons, E.; Wahlström, T.; Axrup, L. Influence of kaolin addition on the dynamics of oxygen mass transport in polyvinyl alcohol dispersion coatings. Nord. Pulp Pap. Res. J. 2015, 30, 385–392. [Google Scholar] [CrossRef]
- Ben Dhieb, F.; Tabatabaei, S.H.; Mighri, F.; Ajji, A. Comparison of Crosslinking Efficiency in Dip and Roll-Deposited Coatings on Their Oxygen Barrier. ACS Omega 2019, 4, 15772–15779. [Google Scholar] [CrossRef] [PubMed]
- Schiessl, S.; Kucukpinar, E.; Cros, S.; Miesbauer, O.; Langowski, H.C.; Eisner, P. Nanocomposite Coatings Based on Polyvinyl Alcohol and Montmorillonite for High-Barrier Food Packaging. Front. Nutr. 2022, 9, 790157. [Google Scholar] [CrossRef] [PubMed]
- Schiessl, S.; Kucukpinar, E.; Schwiddessen, R.; Langowski, H.C.; Eisner, P. Mechanisms of permeation of helium, hydrogen, oxygen, and water vapor through silicate-based composite barrier coating layers. Surf. Coat. Technol. 2024, 483, 130800. [Google Scholar] [CrossRef]
- Lim, M.; Kwon, H.; Kim, D.; Seo, J.; Han, H.; Khan, S.B. Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly(vinyl alcohol) hybrid films for packaging applications. Prog. Org. Coat. 2015, 85, 68–75. [Google Scholar] [CrossRef]
- Müller, K.; Scheuerer, Z.; Florian, V.; Skutschik, T.; Sängerlaub, S. Comparison of test methods for oxygen permeability: Optical method versus carrier gas method. Polym. Test. 2017, 63, 126–132. [Google Scholar] [CrossRef]
- Hare, B.A.; Moyse, A.; Sue, H.J. Analysis of scratch-induced damages in multi-layer packaging film systems. J. Mater. Sci. 2012, 47, 1389–1398. [Google Scholar] [CrossRef]
- DIN ISO 8296; DIN Deutsches Institut für Normung e.V. Plastics-Film and Sheeting-Determination of Wetting Tension. ISO: London, UK, 2008.
- Bradley, E.; Castle, L.; Dines, T.; Fitzgerald, A.; Gonzalez Tunon, P.; Jickells, S.; Johns, S.; Layfield, E.; Mountfort, K.; Onoh, H.; et al. Test method for measuring non-visible set-off from inks and lacquers on the food-contact surface of printed packaging materials. Food Addit. Contam. 2005, 22, 490–502. [Google Scholar] [CrossRef]
- DIN 53380-2; DIN Deutsches Institut für Normung e.V. Testing of Plastics—Determination of Gas Transmission Rate—Part 2: Manometric Method for Testing of Plastic Films. ISO: London, UK, 2006.
- Mansuri, A.; Kumar, A. Introduction to Stereo Microscope. In Forensic Microscopy: Truth Under the Lenses; CRC: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Simon, J.M.; Comastri, S.A. The compound microscope: Optical tube length or parfocalization? Eur. J. Phys. 2005, 26, 1101. [Google Scholar] [CrossRef]
- ASTM F392/F392M-21; Standard Practice for Conditioning Flexible Barrier Materials for Flex Durability. ASTM International: West Conshohocken, PA, USA, 2023.
- DIN EN ISO 527-3; DIN Deutsches Institut für Normung e.V. Plastics—Determination of Tensile Properties—Part 3: TEST Conditions for Films and Sheets (ISO 527-3:2018). ISO: London, UK, 2006.
- Barrer, R.M. Diffusion in and Through Solids; University Press: Oxford, UK, 1941. [Google Scholar]
- McMaster, R.C. Nondestructive Testing Handbook, 2nd ed.; Amer Society for Nondestructive: Columbus, OH, USA, 1982; Volume 2. [Google Scholar]
- ISO 3452-1:2021; Non-Destructive Testing. Penetrant Testing—Part 1: General Principles. ISO: London, UK, 2021.
- Dobrovszky, K.; Ronkay, F. Effects of Phase Inversion on Molding Shrinkage, Mechanical, and Burning Properties of Injection-molded PET/HDPE and PS/HDPE Polymer Blends. Polym.-Plast. Technol. Eng. 2017, 56, 1147–1157. [Google Scholar] [CrossRef]
- Li, F.; Biagioni, P.; Bollani, M.; Maccagnan, A.; Piergiovanni, L. Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 2013, 20, 2491–2504. [Google Scholar] [CrossRef]
- Aidun, C.K.; Triantafillopoulos, N.G. High-Speed Blade Coating. In Liquid Film Coating: Scientific Principles and Their Technological Implications; Springer: Dordrecht, The Netherlands, 1997; pp. 637–672. [Google Scholar] [CrossRef]
- Yan, X.; Yang, L.; An, Y.; Jin, W.; Li, Y.; Li, B. Surface roughness and hydrophilicity enhancement of polyolefin-based membranes by three kinds of plasma methods. Surf. Interface Anal. 2015, 47, 545–553. [Google Scholar] [CrossRef]
- Oliveira, K.M.C.; Consani, S.; Gonçalves, L.S.; Brandt, W.C.; Ccahuana-Vásquez, R.A. Photoelastic evaluation of the effect of composite formulation on polymerization shrinkage stress. Braz. Oral Res. 2012, 26, 202–208. [Google Scholar] [CrossRef]
- Faisant, J.; Aït-Kadi, A.; Bousmina, M.; Descheˆnes, L. Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends. Polymer 1998, 39, 533–545. [Google Scholar] [CrossRef]
- Felts, J.T. Transparent Barrier Coatings Update: Flexible Substrates. J. Plast. Film. Sheeting 1993, 9, 139–158. [Google Scholar] [CrossRef]
- Aydemir, C.; Altay, B.N.; Akyol, M. Surface analysis of polymer films for wettability and ink adhesion. Color Res. Appl. 2021, 46, 489–499. [Google Scholar] [CrossRef]
- Azar, G.T.P.; Yelkarasi, C.; Ürgen, M. The role of droplets on the cavitation erosion damage of TiN coatings produced with cathodic arc physical vapor deposition. Surf. Coat. Technol. 2017, 322, 211–217. [Google Scholar] [CrossRef]
- Karimi, A.; Wan Daud, W.M.A. Harmless hydrogels based on PVA/Na+-MMT nanocomposites for biomedical applications: Fabrication and characterization. Polym. Compos. 2017, 38, 1135–1143. [Google Scholar] [CrossRef]
- Yu, Y.H.; Lin, C.Y.; Yeh, J.M.; Lin, W.H. Preparation and properties of poly(vinyl alcohol)–clay nanocomposite materials. Polymer 2003, 44, 3553–3560. [Google Scholar] [CrossRef]
- Schiessl, S.; Kucukpinar, E.; Rivollier, N.; Langowski, H.C.; Eisner, P. A Comparative Study on the Roll-to-Roll Processing of a Silicate—Polyvinyl Alcohol Composite Barrier Lacquer Using Slot-Die and Reverse Gravure Coating Techniques. Polymers 2023, 15, 2761. [Google Scholar] [CrossRef]
- Singh, R. Penetrant Testing. In Applied Welding Engineering: Processes, Codes, and Standards; Butterworth-Heinemann: Oxford, UK, 2020; pp. 283–291. [Google Scholar]
Polymer Film | Young’s Modulus MPa | Tensile Strength MPa | Elongation at Break % |
---|---|---|---|
PET-control | 4.10 × 103 ± 148 | 252 ± 9.03 | 105 ± 3.20 |
PE-control | 141 ± 28.8 | 84.5 ± 3.02 | 132 ± 3.50 |
PLA-control | 3.09 × 103 ± 123 | 105 ± 2.38 | 38.6 ± 4.70 |
Sample Code | Thickness μm | Permeability Coefficient | Sample Code | Thickness μm | Permeability Coefficient |
---|---|---|---|---|---|
PET-control | 23 ± 0.2 | 4.2 × 104 ± 8.9 × 102 | PE-control | 23 ± 0.3 | 3.3 × 105 ± 3.8 × 103 |
PET|CBL(1:1)-20 | 0.8 ± 0.2 | 4.1 × 101 ± 3.0 | PE|CBL(1:1)-20 | 1.7 ± 0.3 | 6.0 × 103 ± 1.6 × 102 |
PET|CBL(1:1)-40 | 2.7 ± 0.4 | 3.9 × 101 ± 2.1 | PE|CBL(1:1)-40 | 4.1 ± 0.6 | 6.4 × 103 ± 1.7 × 102 |
PET|CBL(1:1)-80 | 5.9 ± 0.3 | 3.8 × 101 ± 2.9 | PE|CBL(1:1)-80 | 7.2 ± 0.5 | 6.7 × 103 ± 1.3 × 102 |
PET|CBL(1:1)-130 | 7.3 ± 0.5 | 5.5 × 101 ± 5.0 | PE|CBL(1:1)-130 | 9.3 ± 0.6 | 8.5 × 103 ± 2.5 × 102 |
Sample Code | Thickness μm | Permeability Coefficient | Sample Code | Thickness μm | Permeability Coefficient |
---|---|---|---|---|---|
PET|PVA(1:0)-40 | 3.9 ± 0.2 | 1.5 × 103 ± 4.0 × 101 | PE|PVA(1:0)-40 | 4.8 ± 0.3 | 2.5 × 104 ± 2.1 × 102 |
PET|CBL(2:1)-40 | 3.1 ± 0.4 | 1.7 × 102 ± 5.9 | PE|CBL(2:1)-40 | 4.4 ± 0.6 | 1.2 × 104 ± 1.7 × 102 |
PET|CBL(1:1)-40 | 2.7 ± 0.4 | 3.9 × 101 ± 2.1 | PE|CBL(1:1)-40 | 4.1 ± 0.6 | 6.4 × 103 ± 1.7 × 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zainal Abedin, N.H.; Schiessl, S.; Langowski, H.-C. Buckling Resistance and Its Effect on the Gas Barrier of Composite Coating Layers Based on Polyvinyl Alcohol and Montmorillonite. Coatings 2024, 14, 1578. https://doi.org/10.3390/coatings14121578
Zainal Abedin NH, Schiessl S, Langowski H-C. Buckling Resistance and Its Effect on the Gas Barrier of Composite Coating Layers Based on Polyvinyl Alcohol and Montmorillonite. Coatings. 2024; 14(12):1578. https://doi.org/10.3390/coatings14121578
Chicago/Turabian StyleZainal Abedin, Nur Hanani, Stefan Schiessl, and Horst-Christian Langowski. 2024. "Buckling Resistance and Its Effect on the Gas Barrier of Composite Coating Layers Based on Polyvinyl Alcohol and Montmorillonite" Coatings 14, no. 12: 1578. https://doi.org/10.3390/coatings14121578
APA StyleZainal Abedin, N. H., Schiessl, S., & Langowski, H.-C. (2024). Buckling Resistance and Its Effect on the Gas Barrier of Composite Coating Layers Based on Polyvinyl Alcohol and Montmorillonite. Coatings, 14(12), 1578. https://doi.org/10.3390/coatings14121578