A Degradation Model of Electrical Contact Performance for Copper Alloy Contacts with Tin Coatings Under Power Current-Carrying Fretting Conditions
Abstract
:1. Introduction
2. Experimental Details
2.1. Test Rig
2.2. Experimental Conditions
3. Results and Discussion
3.1. Typical Degradation Process of Contact Voltage, Friction Coefficient, and Temperature
3.2. Evolution of Microscopic Contact Behavior
3.3. Physical Degradation Mechanisms
4. Degradation Modeling
4.1. The Degradation Model of Contact Voltage Based on Levenberg–Marquardt Algorithm
- (a)
- Define a series of voltage thresholds Uck (k = 1, 2, 3,…). The initial Uc1 is 10 mV, and the end value Uc20 is 100 mV. The interval is 5 mV.
- (b)
- Data sequence and identify the fretting cycles Nkj at which the contact voltage first exceeds Uck, i.e., Nkj = min{N∣UNj ≥ Uck }, where j represents the j-th of parallel tests, j ∈ [1, 5].
- (c)
- Repeat steps (a) and (b) for 5 sets of parallel experimental data, then calculate the average value and the standard deviation .
4.2. Degradation Model Considering the Coupled Effects of Current and Fretting Amplitude
- (a)
- Input the varying conditions and the corresponding model parameters from Table A2 as the training data.
- (b)
- Normalize data.
- (c)
- Perform grid search and 5-fold cross-validation on all combination conditions within the three-dimensional space defined by the kernel function and two hyperparameters. The available kernel functions for selection include the linear, the polynomial, and the radial basis kernel functions (RBF). And the two hyperparameters are used to control the training error and the prediction error.
- (d)
- Calculate the mean squared error and select the optimal combination of the kernel function and the two hyperparameters that minimize this error.
- (e)
- Predict the model parameters under the specified current and fretting amplitude conditions using the optimal model determined in step (d).
- (f)
- Output the prediction results.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
5 A and 300 μm | 10 A and 300 μm | 15 A and 300 μm | 20 A and 300 μm | 25 A and 300 μm | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Uc (mV) | Cycle | σ | Cycle | σ | Cycle | σ | Cycle | σ | Cycle | σ |
5 | 335.33 | 62.94 | —— | —— | —— | —— | —— | —— | —— | —— |
10 | 588.67 | 155.84 | 234.60 | 71.94 | 49.89 | 15.51 | —— | —— | —— | —— |
15 | 687.00 | 176.41 | 381.80 | 130.33 | 232.00 | 60.22 | 115.80 | 13.45 | —— | —— |
20 | 740.33 | 173.91 | 497.60 | 173.52 | 310.00 | 79.94 | 251.60 | 55.12 | 147.40 | 53.04 |
25 | 791.33 | 173.58 | 581.60 | 226.81 | 357.33 | 94.10 | 322.00 | 61.70 | 242.60 | 114.65 |
30 | 830.00 | 185.38 | 620.20 | 235.67 | 409.33 | 127.70 | 369.80 | 72.55 | 315.60 | 143.79 |
35 | 864.00 | 199.17 | 684.20 | 211.76 | 443.44 | 132.57 | 406.00 | 74.17 | 361.00 | 164.60 |
40 | 899.33 | 205.87 | 710.20 | 226.11 | 470.78 | 142.71 | 450.40 | 68.83 | 397.00 | 175.93 |
45 | 927.75 | 204.00 | 724.40 | 233.55 | 500.22 | 147.56 | 481.00 | 78.65 | 423.40 | 187.95 |
50 | 956.00 | 228.87 | 758.60 | 231.92 | 526.89 | 149.76 | 500.00 | 89.70 | 452.80 | 204.44 |
55 | 992.50 | 242.01 | 772.60 | 234.20 | 552.22 | 154.14 | 527.80 | 102.02 | 475.60 | 221.62 |
60 | 1030.00 | 249.18 | 793.60 | 230.21 | 594.33 | 164.09 | 551.20 | 96.78 | 495.20 | 221.26 |
65 | 1070.25 | 216.80 | 835.60 | 214.99 | 622.67 | 176.80 | 578.00 | 109.82 | 529.20 | 217.50 |
70 | 1115.67 | 234.65 | 864.00 | 216.45 | 656.33 | 168.87 | 610.80 | 122.96 | 569.00 | 222.03 |
75 | 1164.00 | 228.87 | 919.50 | 234.19 | 709.67 | 186.41 | 662.00 | 147.57 | 605.40 | 238.95 |
80 | 1196.50 | 208.38 | 964.50 | 188.34 | 740.78 | 201.32 | 719.20 | 201.98 | 616.60 | 241.43 |
85 | 1221.50 | 219.99 | 999.25 | 219.30 | 770.44 | 191.40 | 752.60 | 219.27 | 643.80 | 259.25 |
90 | 1232.75 | 225.05 | 1010.75 | 211.07 | 790.00 | 191.83 | 764.60 | 213.34 | 657.00 | 251.54 |
95 | 1234.75 | 222.34 | 1019.75 | 204.52 | 800.56 | 188.34 | 770.00 | 213.29 | 657.80 | 250.76 |
100 | 1237.75 | 224.26 | 1023.50 | 224.86 | 813.78 | 197.08 | 778.80 | 212.98 | 660.40 | 248.28 |
30 A and 300 μm | 15 A and 200 μm | 15 A and 250 μm | 15 A and 350 μm | 15 A and 400 μm | ||||||
Uc(mV) | Cycle | σ | Cycle | σ | Cycle | σ | Cycle | σ | Cycle | σ |
5 | —— | —— | —— | —— | —— | —— | —— | —— | —— | —— |
10 | —— | —— | 92.50 | 3.72 | 104.75 | 25.32 | 87.20 | 21.24 | 25.33 | 9.48 |
15 | —— | —— | 797.00 | 208.91 | 352.00 | 112.31 | 230.60 | 31.36 | 195.00 | 52.63 |
20 | 44.00 | 7.82 | 1278.25 | 353.31 | 467.00 | 187.94 | 284.60 | 36.72 | 334.67 | 109.13 |
25 | 144.60 | 17.51 | 1532.75 | 417.44 | 534.00 | 190.73 | 317.00 | 40.78 | 424.00 | 106.09 |
30 | 209.00 | 48.57 | 1663.50 | 444.87 | 592.25 | 192.95 | 342.00 | 43.95 | 478.33 | 125.53 |
35 | 252.60 | 68.80 | 1745.50 | 465.86 | 634.00 | 196.94 | 378.60 | 58.09 | 508.00 | 120.54 |
40 | 288.80 | 78.56 | 1795.75 | 473.32 | 682.25 | 205.17 | 413.60 | 66.49 | 534.67 | 109.22 |
45 | 318.20 | 87.83 | 1838.75 | 480.12 | 709.75 | 208.59 | 436.20 | 69.15 | 550.00 | 108.59 |
50 | 349.20 | 102.23 | 1874.25 | 487.43 | 726.25 | 215.47 | 460.40 | 74.99 | 569.33 | 106.30 |
55 | 382.00 | 123.72 | 1944.00 | 494.54 | 764.25 | 201.42 | 488.00 | 89.87 | 588.67 | 100.18 |
60 | 420.20 | 133.10 | 2001.00 | 509.35 | 794.75 | 197.09 | 519.00 | 88.60 | 608.00 | 107.81 |
65 | 456.80 | 161.05 | 2082.50 | 521.48 | 962.25 | 191.09 | 553.00 | 85.73 | 631.33 | 121.30 |
70 | 495.80 | 183.50 | 2138.50 | 520.14 | 1046.50 | 253.90 | 597.40 | 103.07 | 659.33 | 141.65 |
75 | 530.80 | 185.67 | 2209.00 | 521.16 | 1121.00 | 318.78 | 642.40 | 140.98 | 686.33 | 153.76 |
80 | 564.60 | 209.11 | 2331.00 | 561.50 | 1184.75 | 304.54 | 671.40 | 152.03 | 697.33 | 157.70 |
85 | 573.60 | 214.37 | 2403.25 | 578.33 | 1258.25 | 283.76 | 684.00 | 157.41 | 697.67 | 157.98 |
90 | 589.00 | 226.85 | 2587.75 | 648.86 | 1287.25 | 294.94 | 689.00 | 155.45 | 702.67 | 156.56 |
95 | 599.60 | 237.42 | 2632.25 | 644.55 | 1300.50 | 308.45 | 697.60 | 151.51 | 703.67 | 157.01 |
100 | 603.20 | 241.58 | 2667.50 | 654.15 | 1316.50 | 309.66 | 699.00 | 151.74 | 704.00 | 157.29 |
5 A and 300 μm | 10 A and 300 μm | 15 A and 300 μm | 20 A and 300 μm | 25 A and 300 μm | |
---|---|---|---|---|---|
A1 | 0.42474 | 2.64146 | 2.26005 | 3.07944 | 3.81658 |
B1 | 0.00500 | 0.00366 | 0.00569 | 0.00515 | 0.00502 |
C1 | 2.46277 | 3.71963 | 6.96544 | 9.17703 | 11.81203 |
A2 | 52.80663 | 34.58883 | 59.91668 | 55.57935 | 64.82063 |
B2 | 616.59758 | 593.03751 | 178.44899 | 225.39250 | 114.11079 |
C2 | 258.02616 | 124.62783 | 300.50292 | 261.88600 | 326.42660 |
A3 | 6.66216 | 7.75326 | 17.25970 | 9.05224 | 6.28440 |
B3 | 1239.62501 | 1028.01982 | 845.51386 | 785.88479 | 661.84623 |
C3 | 104.29731 | 111.62254 | 159.87916 | 118.13538 | 102.25083 |
kσ | 0.24408 | 0.36801 | 0.26371 | 0.23481 | 0.40859 |
30 A and 300 μm | 15 A and 200 μm | 15 A and 250 μm | 15 A and 350 μm | 15 A and 400 μm | |
A1 | 4.52267 | 0.60671 | 4.28896 | 2.45438 | 1.95619 |
B1 | 0.00604 | 0.00215 | 0.00250 | 0.00646 | 0.00515 |
C1 | 14.10424 | 9.71045 | 4.85973 | 5.66467 | 8.27086 |
A2 | 113.89099 | 54.59782 | 29.38419 | 39.05131 | 53.41127 |
B2 | −394.99957 | 1317.24200 | 670.21730 | 256.77320 | 370.59340 |
C2 | 703.25948 | 296.44660 | 110.47500 | 157.52920 | 232.39330 |
A3 | 12.47878 | 13.45950 | 10.63947 | 9.46488 | 6.11403 |
B3 | 614.96786 | 2771.16300 | 1581.74800 | 703.66950 | 704.36880 |
C3 | 130.19653 | 161.78190 | 137.26320 | 113.68390 | 93.53919 |
kσ | 0.35652 | 0.25117 | 0.25498 | 0.24353 | 0.27189 |
References
- Park, Y.W.; Narayanan, T.S.N.S.; Lee, K.Y. Effect of temperature on the fretting corrosion of tin plated copper alloy contacts. Wear 2007, 262, 320–330. [Google Scholar] [CrossRef]
- Fu, R.; Choe, S.Y.; Jackson, R.L.; Flowers, G.T.; Bozack, M.J.; Zhong, L.; Kim, D. Vibration-Induced changes in the contact resistance of high power electrical connectors for hybrid vehicles. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 185–193. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Zeng, Z.; Chen, N. Mechanical behavior and fatigue life estimation on fretting wear for micro-rectangular electrical connector. Microelectron. Reliab. 2016, 66, 106–112. [Google Scholar] [CrossRef]
- Kloch, K.T.; Kozak, P.; Mlyniec, A. A review and perspectives on predicting the performance and durability of electrical contacts in automotive applications. Eng. Fail. Anal. 2021, 121, 105143. [Google Scholar] [CrossRef]
- Flowers, G.T.; Xie, F.; Bozack, M.J.; Hai, X.; Rickett, B.I.; Malucci, R.D. A Study of the physical characteristics of vibration-induced fretting corrosion. IEEE Trans. Compon. Packag. Technol. 2006, 29, 318–325. [Google Scholar] [CrossRef]
- Wang, X.; Ping, X.; Zeng, X.; Wang, R.; Zhao, Q.; Ying, S.; Hu, T. Fretting fatigue experiment and simulation of WC-12Co coating taking into account the wear effects. Surf. Coat. Technol. 2022, 441, 128555. [Google Scholar] [CrossRef]
- He, W.; Feng, Y.; Wu, S.; Wu, K.; Ye, J.; Wang, W. Numerical simulation on the effect of current intensity on electrical contact performance of electrical connectors subject to micro-slip wear. Wear 2024, 542–543, 205270. [Google Scholar] [CrossRef]
- Hannel, S.; Fouvry, S.; Kapsa, P.; Vincent, L. The fretting sliding transition as a criterion for electrical contact performance. Wear 2001, 249, 761–770. [Google Scholar] [CrossRef]
- Park, Y.W.; Narayanan, T.S.N.S.; Lee, K.Y. Effect of fretting amplitude and frequency on the fretting corrosion behaviour of tin plated contacts. Surf. Coat. Technol. 2006, 201, 2181–2192. [Google Scholar] [CrossRef]
- Park, Y.W.; Bapu, G.N.K.R.; Lee, K.Y. Studies of tin coated brass contacts in fretting conditions under different normal loads and frequencies. Surf. Coat. Technol. 2007, 201, 7939–7951. [Google Scholar] [CrossRef]
- Pecht, M.; Jaai, R. A prognostics and health management roadmap for information and electronics-rich systems. Microelectron. Reliab. 2010, 50, 317–323. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Ling, S.; Xu, L.; Li, D.; Zhai, G. Fretting wear reliability assessment methodology of gold-plated electrical connectors considering manufacture parameters distribution. Microelectron. Reliab. 2020, 114, 113787. [Google Scholar] [CrossRef]
- Fouvry, S.; Liskiewicz, T.; Kapsa, P.; Hannel, S.; Sauger, E. An energy description of wear mechanisms and its applications to oscillating sliding contacts. Wear 2003, 255, 287–298. [Google Scholar] [CrossRef]
- Ji, X.; Wu, Y.; Lu, B.; Pascucci, V.C. Fretting corrosion degradation of non-noble metal coated contact surfaces: A theoretical model. Tribol. Int. 2016, 97, 31–37. [Google Scholar] [CrossRef]
- Wu, J.; Wu, C.; Cao, S.; Or, S.; Deng, C.; Shao, X. Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines. IEEE Trans. Ind. Electron. 2019, 66, 529–539. [Google Scholar] [CrossRef]
- Wu, Q.; Ding, K.; Huang, B. Approach for fault prognosis using recurrent neural network. J. Intell. Manuf. 2018, 31, 1621–1633. [Google Scholar] [CrossRef]
- Yang, X.; Fang, Z.; Yang, Y.; Mba, D.; Li, X. A novel multi-information fusion grey model and its application in wear trend prediction of wind turbines. Appl. Math. Model. 2019, 71, 543–557. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Ma, X.; Yang, L. Equivalence analysis of accelerated degradation mechanism based on stochastic degradation models. Qual. Reliab. Eng. Int. 2017, 33, 2281–2294. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans. Ind. Electron. 2019, 66, 3208–3216. [Google Scholar] [CrossRef]
- Li, W.; Shao, D.; Liu, S. Study on PCA-RBF Neural Network Prediction Method of Storage Life for Hermetically Sealed Relay. In Proceedings of the 5th International Conference on Reliability of Electrical Products and Electrical Contacts, Wenzhou, China, 16 November 2014. [Google Scholar]
- Li, T.; Pei, H.; Pang, Z.; Si, X.; Zheng, J. A sequential bayesian updated wiener process model for remaining useful life prediction. IEEE Access 2020, 8, 5471–5480. [Google Scholar] [CrossRef]
- Zhang, Z.; Si, X.; Hu, C.; Lei, Y. Degradation data analysis and remaining useful life estimation: A review on wiener-process-based methods. Eur. J. Oper. Res. 2018, 271, 775–796. [Google Scholar] [CrossRef]
- Fouvry, S.; Jedrzejczyk, P.; Perrinet, O.; Alquier, O.; Chalandon, P. Introduction of a “Modified Archard Wear Law” to Predict the Electrical Contact Endurance of Thin Plated Silver Coatings Subjected to Fretting Wear. In Proceedings of the 58th Holm Conference on Electrical Contacts, Portland, OR, USA, 23–26 September 2012. [Google Scholar]
- Dréano, A.; Fouvry, S.; Guillonneau, G. A tribo-oxidation abrasive wear model to quantify the wear rate of a cobalt-based alloy subjected to fretting in low-to-medium temperature conditions. Tribol. Int. 2018, 125, 128–140. [Google Scholar] [CrossRef]
- Laporte, J.; Perrinet, O.; Fouvry, S. Prediction of the electrical contact resistance endurance of silver-plated coatings subject to fretting wear, using a friction energy density approach. Wear 2015, 330, 170–181. [Google Scholar] [CrossRef]
- Pompanon, F.; Fouvry, S.; Alquier, O. Influence of the relative humidity and H2S-SO2 polluted air on the fretting wear behavior of silver-plated electrical contacts. Wear 2022, 508, 204455. [Google Scholar] [CrossRef]
- Sun, B.; Li, Y.; Wang, Z.; Ren, Y.; Feng, Q.; Yang, D.; Lu, M.; Chen, X. Remaining useful life prediction of aviation circular electrical connectors using vibration-induced physical model and particle filtering method. Microelectron. Reliab. 2019, 92, 114–122. [Google Scholar] [CrossRef]
- Lim, C.K.R.; Mba, D. Switching Kalman filter for failure prognostic. Mech. Syst. Signal Proc. 2015, 52–53, 426–435. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, K.; Sun, B.; Zhu, C. Electrical Connector Ultimate Vibration Load Quantization and Application Technology. In Proceedings of the 4th IEEE International Conference on Prognostics and System Health Management (PHM), Milan, Italy, 8–11 September 2013. [Google Scholar]
- Park, Y.W.; Bapu, G.N.K.R.; Lee, K.Y. The influence of current load on fretting of electrical contacts. Tribol. Int. 2009, 42, 682–689. [Google Scholar] [CrossRef]
- Carvou, E.; Ben Jemaa, N. Statistical study of voltage fluctuations in power connectors during fretting vibration. IEEE Trans. Compon. Packag. Technol. 2009, 32, 268–272. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Lu, Z.; Yue, W.; Zhu, L. Effect of electric currents on tribological behaviors of Ti/MoS2 composite film sliding against aluminum. Surf. Topogr. Metrol. Prop. 2019, 7, 025014. [Google Scholar] [CrossRef]
- Carvou, E.; El Abdi, R.; Razafiarivelo, J.; Benjemaa, N.; Zindine, E.M. Thermo-mechanical study of a power connector. Measurement 2012, 45, 889–896. [Google Scholar] [CrossRef]
- Meng, Y.; Fang, H.; Zhang, C.; He, Y.; Ren, W. Investigation on Melt Erosion Phenomenon of Heavy-Duty Connectors under Fretting Conditions. In Proceedings of the 68th Holm Conference on Electrical Contacts, Seattle, WA, USA, 4–11 October 2023. [Google Scholar]
- Meng, Y.; Ren, W.; Han, Y.; Zhang, C. Effects of current load on wear and melt erosion of electrical contacts under fretting condition. Tribol. Int. 2024, 194, 109511. [Google Scholar] [CrossRef]
- Ren, W.; Wang, P.; Song, J.; Zhai, G. Effects of current load on wear and fretting corrosion of gold-plated electrical contacts. Tribol. Int. 2014, 70, 75–82. [Google Scholar] [CrossRef]
- Slade, P.G. Electrical Contacts: Principles and Applications, 2nd ed.; CRC Press: New York, NY, USA, 2014; pp. 57–69. [Google Scholar]
- Braunovic, M.; Konchits, V.V.; Myshkin, N.K. Electrical Contacts: Fundamentals, Applications and Technology; CRC Press: Boca Raton, FL, USA, 2006; pp. 59–64. [Google Scholar]
- Rubio, J.D. Stability analysis of the modified Levenberg-Marquardt algorithm for the artificial neural network training. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3510–3524. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Load current (A) | 5, 10, 15, 20, 25, and 30 |
Fretting amplitude (μm) | 200, 250, 300, 350, and 400 |
Initial normal force (N) | 3.5 |
Acceleration amplitude (m/s2) | 2 |
Motion cycle (s) | 4 |
Sampling time (μs) | 4 |
Environment temperature (°C) | 25 |
Humidity (% RH) | 65 |
Liner Training | Liner Validation | Polynomial Training | Polynomial Validation | Rbf Training | Rbf Validation | |
---|---|---|---|---|---|---|
1 | 1.62 | 5.31 | 1.69 | 0.67 | 2.11 | 0.08 |
2 | 1.89 | 0.58 | 1.80 | 0.23 | 1.69 | 5.36 |
3 | 1.90 | 0.44 | 1.72 | 0.54 | 1.62 | 1.63 |
4 | 1.24 | 4.00 | 0.88 | 0.49 | 2.02 | 0.09 |
5 | 1.69 | 2.70 | 0.57 | 0.21 | 1.33 | 2.79 |
Average for 5 folds | 1.67 | 2.60 | 1.33 | 0.43 | 1.75 | 1.77 |
Condition | MAPE (%) | FLPE (%) |
---|---|---|
5 A, 200 μm | 2.97 | 7.91 |
5 A, 400 μm | 7.22 | 6.41 |
30 A, 200 μm | 6.46 | 1.53 |
30 A, 400 μm | 9.32 | 4.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Ren, W.; Zhang, C. A Degradation Model of Electrical Contact Performance for Copper Alloy Contacts with Tin Coatings Under Power Current-Carrying Fretting Conditions. Coatings 2024, 14, 1587. https://doi.org/10.3390/coatings14121587
Meng Y, Ren W, Zhang C. A Degradation Model of Electrical Contact Performance for Copper Alloy Contacts with Tin Coatings Under Power Current-Carrying Fretting Conditions. Coatings. 2024; 14(12):1587. https://doi.org/10.3390/coatings14121587
Chicago/Turabian StyleMeng, Yuan, Wanbin Ren, and Chao Zhang. 2024. "A Degradation Model of Electrical Contact Performance for Copper Alloy Contacts with Tin Coatings Under Power Current-Carrying Fretting Conditions" Coatings 14, no. 12: 1587. https://doi.org/10.3390/coatings14121587
APA StyleMeng, Y., Ren, W., & Zhang, C. (2024). A Degradation Model of Electrical Contact Performance for Copper Alloy Contacts with Tin Coatings Under Power Current-Carrying Fretting Conditions. Coatings, 14(12), 1587. https://doi.org/10.3390/coatings14121587