On Generalized Nonexpansive Maps in Banach Spaces
Abstract
:1. Introduction
2. Preliminaries
- asymptotic radius of at a by ;
- asymptotic radius of relative to E by ;
- asymptotic center of relative to E by .
3. Generalized -Non-Expansive Mappings
- (i)
- If P is Suzuki non-expansive, then P is generalized -non-expansive.
- (ii)
- If P is generalized α-non-expansive, then P is generalized -non-expansive.
- (iii)
- If P is β-Reich–Suzuki type non-expansive, then P is generalized -non-expansive.
- (i)
- .
- (ii)
- Eitheror.
- (iii)
- Eitheror.
4. Convergence Theorems in Uniformly Convex Banach Spaces
5. Example
- (i)
- If , then we have
- (ii)
- If , then we have
- (iii)
- If and , then we have
- (i).
- .
- (ii).
- .
- (iii).
- .
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kirk, W.A. A fixed point theorem for mappings which do not increase distance. Am. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef] [Green Version]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gohde, D. Zum Prinzip der Kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Byrne, C. Unified treatment of some algorithms insignal processing andimage construction. Inverse Probl. 2004, 20, 103–120. [Google Scholar] [CrossRef] [Green Version]
- Podilchuk, C.I.; Mammone, R.J. Image recovery by convex projections using a least squares constraint. J. Opt. Soc. Am. 1990, 7, 517–521. [Google Scholar] [CrossRef]
- Youla, D. On deterministic convergence of iterations of related projection mappings. J. Vis. Commun. Image Represent. 1990, 1, 12–20. [Google Scholar] [CrossRef]
- Yambangwai, D.; Aunruean, S.; Thianwan, T. A new modified three step iteration method for G-non-expansive mappings in Banach spaces with a graph. Numerical Algor. 2019. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Math. Vesnik 2014, 66, 223–234. [Google Scholar]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized non-expansive mapping. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, K.; Kohsaka, F. Fixed point theorem for α-non-expansive mappings in Banach spaces. Nonlinear Anal. 2011, 74, 4387–4391. [Google Scholar] [CrossRef]
- Pant, R.; Shukla, R. Approximating fixed points of generalized α-non-expansive mappings in Banach spaces. Numer. Funct. Anal. Optim. 2017, 38, 248–266. [Google Scholar] [CrossRef]
- Pant, R.; Pandey, R. Existence and convergence results for a class of non-expansive type mappings in hyperbolic spaces. Apllied Gen. Toplogy 2019, 20, 281–295. [Google Scholar] [CrossRef]
- Clarkson, J.A. Uniformly convex spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [Google Scholar] [CrossRef]
- Opial, Z. Weak and strong convergence of the sequence of successive approximations for non-expansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, W. Nonlinear Functional Analysis; Yokohoma Publishers: Yokohoma, Japan, 2000. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Fixed Point Theory for Lipschitzian-Type Mappings with Applications Series; Topological Fixed Point Theory and Its Applications; Springer: New York, NY, USA, 2009; Volume 6. [Google Scholar]
- Schu, J. Weak and strong convergence to fixed points of asymptotically non-expansive mappings. Bull. Austral. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Amini-Harandi, A.; Fakhar, M.; Hajisharifi, H.R. Approximate fixed points of α-non-expansive mappings. J. Math. Anal. Appl. 2018, 467, 1168–1173. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regon, D.; Sahu, D.R. Iterative construction of fixed points of nearly asymtotically non-expansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized non-expansive mappings. Appl. Math. Comput. 2016, 275, 147–155. [Google Scholar]
- Hussain, N.; Ullah, K.; Arshad, M. Fixed point approximation of Suzuki generalized non-expansive mappings via new faster iteration process. J. Nonlinear Convex Anal. 2018, 19, 1383–1393. [Google Scholar]
- Senter, H.F.; Dotson, W.G. Approximating fixed points of non-expansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
- Khan, S.H.; Fukhar-ud-din, H. Approximating fixed points of ρ-non-expansive mappings by RK-iterative process in modular function spaces. J. Nonlinear Var. Anal. 2019, 3, 107–114. [Google Scholar]
- Sow, T.M.M. A new general iterative algorithm for solving a variational inequality problem with a quasi-non-expansive mapping in Banach spaces. Commun. Optim. Theory 2019, 2019, 9. [Google Scholar]
- Gao, J. The geometry of Banach spaces and fixed points of non-expansive mappings. J. Nonlinear Funct. Anal. 2017, 2017, 10. [Google Scholar]
Initial Points | Mann | Ishikawa | Noor | S | Abbas | Thakur | K |
---|---|---|---|---|---|---|---|
5 | 32 | 31 | 30 | 4 | 3 | 2 | 2 |
150 | 40 | 36 | 35 | 7 | 5 | 4 | 3 |
500 | 43 | 38 | 36 | 9 | 6 | 5 | 4 |
1000 | 45 | 39 | 37 | 9 | 6 | 6 | 4 |
5000 | 48 | 42 | 39 | 11 | 8 | 7 | 5 |
10000 | 50 | 43 | 40 | 12 | 8 | 7 | 6 |
Iterations | Initial Points | |||||
---|---|---|---|---|---|---|
10 | ||||||
For | ||||||
Mann | 39 | 45 | 51 | 58 | 64 | 70 |
Ishikawa | 37 | 43 | 49 | 55 | 60 | 67 |
Noor | 37 | 42 | 48 | 54 | 60 | 66 |
S | 5 | 8 | 11 | 14 | 17 | 21 |
Abbas | 4 | 6 | 9 | 11 | 13 | 16 |
Thakur | 3 | 5 | 6 | 8 | 9 | 11 |
K | 2 | 3 | 4 | 5 | 6 | 7 |
for | ||||||
Mann | 95 | 107 | 120 | 133 | 146 | 159 |
Ishikawa | 89 | 97 | 105 | 113 | 121 | 130 |
Noor | 88 | 96 | 103 | 111 | 119 | 126 |
S | 6 | 8 | 11 | 14 | 17 | 19 |
Abbas | 3 | 5 | 6 | 8 | 10 | 11 |
Thakur | 3 | 5 | 6 | 8 | 9 | 11 |
K | 2 | 3 | 4 | 5 | 7 | 8 |
for | ||||||
Mann | 23 | 26 | 30 | 33 | 37 | 40 |
Ishikawa | 22 | 25 | 29 | 32 | 36 | 40 |
Noor | 22 | 25 | 29 | 32 | 36 | 39 |
S | 5 | 8 | 12 | 15 | 18 | 22 |
Abbas | 3 | 5 | 7 | 8 | 10 | 12 |
Thakur | 3 | 4 | 6 | 8 | 9 | 11 |
K | 2 | 3 | 4 | 5 | 6 | 8 |
for | ||||||
Mann | 166 | 185 | 205 | 224 | 244 | 265 |
Ishikawa | 155 | 168 | 181 | 194 | 206 | 219 |
Noor | 153 | 164 | 174 | 185 | 196 | 206 |
S | 5 | 8 | 11 | 14 | 17 | 20 |
Abbas | 3 | 5 | 6 | 8 | 9 | 11 |
Thakur | 3 | 5 | 6 | 8 | 9 | 11 |
K | 2 | 3 | 4 | 5 | 6 | 8 |
for | ||||||
Mann | 32 | 35 | 39 | 42 | 45 | 49 |
Ishikawa | 31 | 34 | 37 | 40 | 44 | 47 |
Noor | 31 | 34 | 37 | 40 | 43 | 46 |
S | 6 | 9 | 12 | 15 | 19 | 22 |
Abbas | 4 | 5 | 7 | 9 | 11 | 13 |
Thakur | 3 | 5 | 6 | 8 | 10 | 11 |
K | 2 | 3 | 4 | 6 | 7 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, K.; Ahmad, J.; Sen, M.d.l. On Generalized Nonexpansive Maps in Banach Spaces. Computation 2020, 8, 61. https://doi.org/10.3390/computation8030061
Ullah K, Ahmad J, Sen Mdl. On Generalized Nonexpansive Maps in Banach Spaces. Computation. 2020; 8(3):61. https://doi.org/10.3390/computation8030061
Chicago/Turabian StyleUllah, Kifayat, Junaid Ahmad, and Manuel de la Sen. 2020. "On Generalized Nonexpansive Maps in Banach Spaces" Computation 8, no. 3: 61. https://doi.org/10.3390/computation8030061