Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach
Abstract
:1. Introduction
2. Methods
2.1. The Kinetic Mechanism
2.2. Experimental Outcomes and Kinetic Rate Constant Estimation
2.3. The Kinetic Ordinary Differential Equation Set
2.4. Numerical Integrations
2.5. Optimization Procedure
2.6. Stochastic Simulations
3. Results and Discussion
3.1. Stochastic Simulations of a Single Vesicle with Increasing Membrane Volume
3.2. Stochastic Simulations of Vesicle Populations with Constant Radius and Uniform Solute Distribution
3.3. Stochastic Simulations of Vesicles Populations with Gaussian Solute Distribution
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Bahatyrova, S.; Frese, R.N.; Siebert, C.A.; Olsen, J.D.; van der Werf, K.O.; van Grondelle, R.; Niederman, R.A.; Bullough, P.A.; Otto, C.; Hunter, C.N. The native architecture of a photosynthetic membrane. Nature 2004, 430, 1058–1062. [Google Scholar] [CrossRef]
- Allen, J.P.; Williams, J.C. Photosynthetic reaction centers. FEBS Lett. 1998, 438, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.P.; Feher, G.; Yeates, T.O.; Komiya, H.; Rees, D.C. Structure of the reaction center from Rhodobacter sphaeroides R-26: Protein-cofactor (quinones and Fe2+) interactions. Proc. Natl. Acad. Sci. USA 1988, 85, 8487–8491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stowell, M.H.; McPhillips, T.M.; Rees, D.C.; Soltis, S.M.; Abresch, E.; Feher, G. Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 1997, 276, 812–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mcpherson, P.H.; Okamura, M.Y.; Feher, G. Electron transfer from the reaction center of Rhodobacter sphaeroides to the quinone pool - doubly reduced QB leaves the reaction center. Biochim. Biophys. Acta 1990, 1016, 289–292. [Google Scholar] [CrossRef]
- Crofts, A.R.; Meinhardt, S.W.; Jones, K.R.; Snozzi, M. The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides: A modified q-cycle mechanism. Biochim. Biophys. Acta 1983, 723, 202–218. [Google Scholar] [CrossRef] [Green Version]
- Altamura, E.; Fiorentino, R.; Palazzo, G.; Stano, P.; Mavelli, F. First moves towards photoautotrophic synthetic cells: In vitro study of photosynthetic reaction centre and cytochrome bc1 complex interactions. Biophys. Chem. 2017, 229, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Singhaory, A.; Maffeo, C.; Delgado-Magnero, K.H.; Swainsbury, D.J.K.; Sener, M.; Kleinekathöfer, U.; Vant, J.W.; Nguyen, J.; Hitchcock, A.; Isralewitz, B.; et al. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell 2019, 179, 1098–1111. [Google Scholar] [CrossRef] [PubMed]
- Altamura, E.; Milano, F.; Tangorra, R.R.; Trotta, M.; Omar, O.H.; Stano, P.; Mavelli, F. Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells the article. Proc. Natl. Acad. Sci. USA 2017, 114, 3837–3842. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, G.; Mallardi, A.; Giustini, M.; Berti, D.; Venturoli, G. Cumulant analysis of charge recombination kinetics in bacterial reaction centers reconstituted into lipid vesicles. Biophys. J. 2000, 79, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Mavelli, F.; Trotta, M.; Ciriaco, F.; Agostiano, A.; Giotta, L.; Italiano, F.; Milano, F. The binding of quinone to the photosynthetic reaction centers: Kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes. Eur. Biophys. J. 2014, 43, 301–315. [Google Scholar] [CrossRef] [PubMed]
- Mavelli, F.; Altamura, E.; Cassidei, L.; Stano, P. Recent theoretical approaches to minimal artificial cells. Entropy 2014, 16, 2488–2511. [Google Scholar] [CrossRef]
- Van Kampen, N.G. Stochastic Processes in Physics and Chemistry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1981; pp. 166–186. [Google Scholar]
- Gillespie, D.T. Markov Processes: An Introduction for Physical Scientists; Academic Press: San Diego, CA, USA, 1992; pp. 332–335. [Google Scholar]
- Érdi, P.; Lente, G. Stochastic Chemical Kinetics—Theory and (Mostly) Systems Biological Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Mavelli, F.; Piotto, S. Stochastic simulations of homogeneous chemically reacting systems. J. Mol. Struct. Theochem 2006, 771, 55–64. [Google Scholar] [CrossRef]
- Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic Reactions in Confined Environments. Nat. Nanotechnol. 2016, 11, 409–420. [Google Scholar] [CrossRef]
- Altamura, E.; Carrara, P.; D’Angelo, F.; Mavelli, F.; Stano, P. Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets: A review. Synth. Biol. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- D’Aguanno, E.; Altamura, E.; Mavelli, F.; Fahr, A.; Stano, P.; Luisi, P.L. Physical routes to primitive cells: An experimental model based on the spontaneous entrapment of enzymes inside Micrometer-Sized liposomes. Life 2015, 5, 969–996. [Google Scholar] [CrossRef] [Green Version]
- Mavelli, F.; Stano, P. Experiments and numerical modelling on the capture and concentration of transcription-translation machinery inside vesicles. Artif. Life 2015, 21. [Google Scholar] [CrossRef]
- Mavelli, F.; Ruiz-Mirazo, K. ENVIRONMENT: A computational platform to stochastically simulate reacting and self-reproducing compartments. Phys. Biol. 2010, 3, 36002. [Google Scholar] [CrossRef]
- Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403–434. [Google Scholar] [CrossRef]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Sipos, T.; Tóth, J.; Érdi, P. Stochastic simulation of complex chemical reactions by digital computer. I. The model. React. Kinet. Catal. Lett. 1974, 1, 113–117. [Google Scholar] [CrossRef]
- Sipos, T.; Tóth, J.; Érdi, P. Stochastic simulation of complex chemical reactions by digital computer. II. Applications. React. Kinet. Catal. Lett. 1974, 1, 209–213. [Google Scholar] [CrossRef]
- Kleinfeld, D.; Okamura, M.Y.; Feher, G. Electron transfer in reaction centers of Rhodopseudomonas sphaeroides. I. Determination of the charge recombination pathway of D+QAQ−B and free energy and kinetic relations between Q−AQB and QAQ−B. Biochim. Biophys. Acta 1984, 766, 126–140. [Google Scholar] [CrossRef]
- Shinkarev, V.P.; Wraight, C.A. Electron and proton transfer in the acceptor quinone complex of reaction centres of phototrophic bacteria. In The Photosynthetic Reaction Center; Deisenhofer, J., Norris, J.R., Eds.; Academic Press: Cambridge, MA, USA, 1993; pp. 193–255. [Google Scholar]
- Agostiano, A.; Milano, F.; Trotta, M. Investigation on the detergent role in the function of secondary quinone in bacterial reaction centers. Eur. J. Biochem. 1999, 262, 358–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallardi, A.; Palazzo, G.; Venturoli, G. Binding of ubiquinone to photosynthetic reaction centers: Determination of enthalpy and entropy changes in reverse micelles. J. Phys. Chem. B 1997, 101, 7850–7857. [Google Scholar] [CrossRef]
- Milano, F.; Agostiano, A.; Mavelli, F.; Trotta, M. Kinetics of the quinone binding reaction at the Q(B) site of reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomes. Eur. J. Biochem. 2003, 270, 4595–4605. [Google Scholar] [CrossRef]
- Nagy, L.; Milano, F.; Dorogi, M.; Agostiano, A.; Laczko, G.; Szebenyi, K.; Varo, G.; Trotta, M.; Maroti, P. Protein/lipid interaction in the bacterial photosynthetic reaction center: Phosphatidylcholine and phosphatidylglycerol modify the free energy levels of the quinones. Biochemistry 2004, 43, 12913–12923. [Google Scholar] [CrossRef]
- Milano, F.; Italiano, F.; Agostiano, A.; Trotta, M. Characterisation of RC-proteoliposomes at different RC/lipid ratios. Photosynth. Res. 2009, 100, 107–112. [Google Scholar] [CrossRef]
- Shampine, L.F.; Reichelt, M.W. The MATLAB ODE Suite. SIAM J. Sci. Comput. 1997, 18. [Google Scholar] [CrossRef] [Green Version]
- Levenberg, K. A Method for the Solution of Certain Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Li, H.; Cao, Y.; Petzold, L.R.; Gillespie, D.T. Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 2008, 24, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Mavelli, F.; Ruiz-Mirazo, K. Stochastic simulations of minimal self-reproducing cellular systems. Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2007, 362, 1789–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavelli, F. Stochastic simulations of minimal cells: The Ribocell model. BMC Bioinform. 2012, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavelli, F.; Stano, P. Kinetic models for autopoietic chemical systems: Role of fluctuations in homeostatic regime. Phys. Biol. 2010, 7. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, T.G. The Relationship between Stochastic and Deterministic Models for Chemical Reactions. J. Chem. Phys. 1972, 57, 2976–2978. [Google Scholar] [CrossRef]
- Lente, G.; Ditrói, T. Stochastic Kinetic Analysis of the Frank Model. Stochastic Approach to Flow-Through Reactors. J. Phys. Chem. B 2009, 113, 7237–7242. [Google Scholar] [CrossRef]
- Stano, P.; Altamura, E.; Mavelli, F. Novel directions in molecular systems design: The case of light-transducing synthetic cells. Commun. Integr. Biol. 2017, 10, e1365993. [Google Scholar] [CrossRef]
- Altamura, E.; Albanese, P.; Marotta, R.; Milano, F.; Fiore, M.; Trotta, M.; Stano, P.; Mavelli, F. Light-driven ATP production promotes mRNA biosynthesis inside hybrid multi-compartment artificial protocells. bioRxiv 2020. [Google Scholar] [CrossRef]
Kinetic Rate Constants | ||
---|---|---|
Parameters | Guess Values | Best-Fit Values |
k*in = kin | ≤ 2.18 × 105 M−1 s−1 | 2.45 × 105 M−1 s−1 |
k*out | ≤ 154 s−1 | 114 s−1 |
kout | ≤ 154 s−1 | 170 s−1 |
kAD = k’AD | 10 s−1 | 9.7 s−1 |
kBD | 6.0 × 10−2 | 2.18 × 10−2 |
kAB | 8.15 × 103 s−1 | 1.0 × 104 |
kBA | 574 s−1 | 544 s−1 |
[D+QA−]0 = [DQA]Eq | [D+QA−QB]0 = [DQAQB]Eq | [Q] | |
---|---|---|---|
0.1 | 9.319 × 10−4 | 6.809 × 10−5 | 3.191 × 10−5 |
0.3 | 8.055 × 10−4 | 1.945 × 10−4 | 1.055 × 10−4 |
0.5 | 6.932 × 10−4 | 3.068 × 10−4 | 1.932 × 10−4 |
0.7 | 5.960 × 10−4 | 4.040 × 10−4 | 2.960 × 10−4 |
1.0 | 4.776 × 10−4 | 5.224 × 10−4 | 4.776 × 10−4 |
3.0 | 1.677 × 10−4 | 8.323 × 10−4 | 2.168 × 10−3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altamura, E.; Albanese, P.; Stano, P.; Trotta, M.; Milano, F.; Mavelli, F. Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. Data 2020, 5, 53. https://doi.org/10.3390/data5020053
Altamura E, Albanese P, Stano P, Trotta M, Milano F, Mavelli F. Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach. Data. 2020; 5(2):53. https://doi.org/10.3390/data5020053
Chicago/Turabian StyleAltamura, Emiliano, Paola Albanese, Pasquale Stano, Massimo Trotta, Francesco Milano, and Fabio Mavelli. 2020. "Charge Recombination Kinetics of Bacterial Photosynthetic Reaction Centres Reconstituted in Liposomes: Deterministic Versus Stochastic Approach" Data 5, no. 2: 53. https://doi.org/10.3390/data5020053