Salivary Biomarkers for Diagnosis and Therapy Monitoring in Patients with Heart Failure. A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review Question
2.2. Eligibility Criteria
2.3. Search Strategy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
8-isoPGF2α | 8-isoprostaglandin F2α |
8-epiPGF2α | 8-epiprostaglandin F2α |
BNP | brain natriuretic peptide |
CRP | C-reactive protein |
Gal-3 | galectin-3 |
GDF-15 | growth differentiation factor 15 |
HF | heart failure |
HFmrEF | heart failure with mid-range ejection fraction |
HFpEF | heart failure with preserved ejection fraction |
HFrEF | heart failure with reduced ejection fraction |
hsTn | high sensitivity troponin |
IL-6 | interleukin 6 |
IL-10 | interleukin 10 |
LOD | limit of detection |
LVEF | left ventricular ejection fraction |
NT-proBNP | N-terminal pro-brain natriuretic peptide |
NYHA | New York Heart Association |
sAA | salivary alpha amylase |
S100A7 | protein S100-A7 |
ST2 | soluble interleukin 1 receptor-like 1 |
TNF-α | tumor necrosis factor-α |
UA | uric acid |
References
- Ponikowsky, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; Gonzales-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Van Riet, E.E.S.; Hoes, A.W.; Wagenaar, K.P.; Limburg, A.; Landman, M.A.; Rutten, F.H. Epidemiology of heart failure: The prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur. J. Heart Fail. 2016, 18, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Urbich, M.; Globe, G.; Pantiri, K.; Heisen, M.; Bennison, C.; Wirtz, H.; Di Tanna, G.L. A Systematic Review of Medical Costs Associated with Heart Failure in the USA (2014–2020). Pharm. Econ. 2020, 38, 1219–1236. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, K.S.; Salonen, R.; Rauramaa, R.; Salonen, J.T. The predictive value of cardiorespiratory fitness for cardiovascular events in men with various risk profiles: A prospective population-based cohort study. Eur. Heart J. 2004, 25, 1428–1437. [Google Scholar] [CrossRef]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2020, 22, 391–412. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Jena, A.; Srivatsan, V.; Muthukumar, R.; Dhandapani, V.E. GDF 15-A Novel Biomarker in the Offing for Heart Failure. Curr. Cardiol. Rev. 2016, 12, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Aimo, A.; Januzzi, J.L.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Magnoli, M.; Anand, I.S.; Cohn, J.N.; Tavazzi, L.; et al. Prognostic Value of High-Sensitivity Troponin T in Chronic Heart Failure: An Individual Patient Data Meta-Analysis. Circulation 2018, 137, 286–297. [Google Scholar] [CrossRef]
- Taylor, K.S.; Verbakel, J.Y.; Feakins, B.G.; Price, C.P.; Perera, R.; Bankhead, C.; Pluddemann, A. Diagnostic Accuracy of Point-Of-Care Natriuretic Peptide Testing for Chronic Heart Failure in Ambulatory Care: Systematic Review and Metac. BMJ 2018, 361, k1450. [Google Scholar] [CrossRef] [Green Version]
- McAloon, C.J.; Ali, D.; Hamborg, T.; Banerjee, P.; O’Hare, P.; Randeva, H.; Osman, F. Extracellular Cardiac Matrix Biomarkers in Patients with Reduced Ejection Fraction Heart Failure as Predictors of Response to Cardiac Resynchronisation Therapy: A Systematic Review. Open Heart 2017, 4, e000639. [Google Scholar] [CrossRef] [Green Version]
- Bai., W.; Huang, J.; Zhu, M.; Liu, X.; Tao, X. Association between Elevated Adiponectin Level and Adverse Outcomes in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Braz. J. Med. Biol. Res. 2019, 52, e8416. [Google Scholar] [CrossRef] [Green Version]
- Srivatsan, V.; George, M.; Shanmugam, E. Utility of galectin-3 as a Prognostic Biomarker in Heart Failure: Where Do We Stand? Eur. J. Prev. Cardiol. 2015, 22, 1096–1110. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, I.; Wong, M.V.; Kai, F.H.J.; Gong, M.; Bin, W.K.; Xia, Y.; Lee, S.; Roever, L.; Liu, T.; Tse, G.; et al. Diagnostic and Prognostic Value of Serum C-reactive Protein in Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Heart Fail. Rev. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, K.; Padmanabhan, G. Soluble Neprilysin: A Versatile Biomarker for Heart Failure, Cardiovascular Diseases and Diabetic complications: A Systematic Review. Indian Heart J. 2020, 72, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Schulz, B.L.; Punyadeera, C. The Current Status of Heart Failure Diagnostic Biomarkers Expert. Rev. Mol. Diagn. 2016, 16, 487–500. [Google Scholar] [CrossRef]
- Gamiño-Arroyo, A.E.; Prado-Galbarro, F.J.; García-Pérez, S.; Sánchez-Piedra, C. Effectiveness of Natriuretic Peptide-Guided Treatment of Chronic Heart Failure. A Meta-Analysis. Arch. Cardiol. Mex 2018, 88, 171–177. [Google Scholar] [CrossRef]
- Pearson, M.J.; King, N.; Smart, N.A. Effect of Exercise Therapy on Established and Emerging Circulating Biomarkers in Patients with Heart Failure: A Systematic Review and Meta-Analysis. Open Heart 2018, 5, e000819. [Google Scholar] [CrossRef] [Green Version]
- Chow, S.L.; Maisel, A.S.; Anand, I.; Bozkurt, B.; de Boer, R.A.; Felker, G.M.; Fonarow, G.C.; Greenberg, B.; Januzzi, J.L., Jr.; Kiernan, M.S.; et al. Role of Biomarkers for the Prevention, Assessment, and Management of Heart Failure: A Scientific Statement from the American Heart Association. Circulation 2017, 135, e1054–e1091. [Google Scholar] [CrossRef] [PubMed]
- Alawieh, H.; Chemaly, T.E.; Alam, S.; Khraiche, M. Towards Point-of-Care Heart Failure Diagnostic Platforms: BNP and NT-proBNP Biosensors. Sensors 2019, 19, 5003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripoliti, E.E.; Ioannidou, P.; Toumpaniaris, P.; Rammos, A.; Pacitto, A.; Lourme, J.C.; Goletsis, Y.; Naka, K.K.; Errachid, A.; Fotiadis, D.I.I. Point-of-care testing devices for heart failure analyzing blood and saliva samples. IEEE Rev. Βiomed. Εng. 2019, 13, 17–31. [Google Scholar] [CrossRef]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouët, M.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Fuoco, R.; Errachid, A. Saliva sampling: Methods and devices. An overview. TrAC 2020, 124, 115781. [Google Scholar] [CrossRef]
- Rehman, S.A.; Khurshid, Z.; Niazi, F.H.; Naseem, M.; Al Waddani, H.; Sahibzada, H.A.; Khan, R.S. Role of Salivary Biomarkers in Detection of Cardiovascular Diseases (CVD). Proteomes 2017, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Floriano, P.N.; Christodoulides, N.; Miller, C.S.; Ebersole, J.L.; Spertus, J.; Rose, B.G.; Kinane, D.F.; Novak, J.; Steinhubl, S.; Acosta, S.; et al. Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: A feasibility study. Clin. Chem. 2009, 55, 1530–1538. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.D., III; Sneed, J.D.; Steinhubl, S.R.; Kolasa, J.; Ebersole, J.L.; Lin, Y.; Kryscio, R.J.; McDevitt, J.T.; Campbell, C.L.; Miller, C.S. Oral fluids that detect cardiovascular disease. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gohel, V.; Jones, J.A.; Wehler, C.J. Salivary biomarkers and cardiovascular disease: A systematic review. Clin. Chem. Lab. Med. 2018, 56, 1432–1442. [Google Scholar] [CrossRef]
- Miller, C.S.; Foley, J.D., 3rd; Floriano, P.N.; Christodoulides, N.; Ebersole, J.L.; Campbell, C.L.; Bailey, A.L.; Rose, B.G.; Kinane, D.F.; Novak, M.J.; et al. Utility of salivary biomarkers for demonstrating acute myocardial infarction. J. Dent. Res. 2014, 93, 72S–79S. [Google Scholar] [CrossRef] [PubMed]
- Klimiuk, A.; Zalewska, A.; Sawicki, R.; Knapp, M.; Maciejczyk, M. Salivary Oxidative Stress Increases with the Progression of Chronic Heart Failure. J. Clin. Med. 2020, 9, 769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghimenti, S.; Lomonaco, T.; Bellagambi, F.G.; Biagini, D.; Salvo, P.; Trivella, M.G.; Scali, M.S.; Barletta, V.; Marzilli, M.; Di Francesco, F.; et al. Salivary Lactate and 8-isoprostaglandin F 2α as Potential Non-Invasive Biomarkers for Monitoring Heart Failure: A Pilot Study. Sci. Rep. 2020, 10, 7441. [Google Scholar] [CrossRef]
- Zhang, X.; Karunathilaka, N.; Senanayake, S.; Subramaniam, V.N.; Chan, W.; Kostner, K.; Fraser, J.; Atherton, J.J.; Punyadeera, C. The Potential Prognostic Utility of Salivary galectin-3 Concentrations. Heart Fail. Clin. Res. Cardiol. 2020, 109, 685–692. [Google Scholar] [CrossRef]
- Dekker, R.L.; Lennie, T.A.; Moser, D.K.; Miller, C.S.; Ebersole, J.L.; Chung, M.L.; Campbell, C.L.; Bailey, A.; Tovar, E.G. Salivary Biomarkers, Oral Inflammation, and Functional Status in Patients with Heart Failure. Biol. Res. Nurs. 2017, 19, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Joharimoghadam, A.; Tajdini, M.M.; Bozorgi, A. Salivary B-type Natriuretic Peptide: A New Method for Heart Failure Diagnosis and Follow-Up. Kardiol. Pol. 2017, 75, 71–77. [Google Scholar] [CrossRef]
- Zhang, X.; Walsh, T.; Atherton, J.J.; Kostner, K.; Schulz, B.; Punyadeera, C. Identification and Validation of a Salivary Protein Panel to Detect Heart Failure Early. Theranostics 2017, 7, 4350–4358. [Google Scholar] [CrossRef]
- Hammer, F.; Deutschbein, T.; Marx, A.; Güder, G.; Michalski, R.; Ertl, G.; Allolio, B.; Angermann, C.E.; Stork, S.; Fassnacht, M. High Evening Salivary Cortisol Is an Independent Predictor of Increased Mortality Risk in Patients with Systolic Heart Failure. Int. J. Cardiol. 2016, 203, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wan, Y.; Chata, R.; Brazzale, A.; Atherton, J.J.; Kostner, K.; Dimeski, G.; Punyadeera, C. A Pilot Study to Demonstrate Diagnostic Potential of galectin-3 Levels in Saliva. J. Clin. Pathol. 2016, 69, 1100–1104. [Google Scholar] [CrossRef] [PubMed]
- Alhurani, A.S.; Dekker, R.; Tovar, E.; Bailey, A.; Lennie, T.A.; Randall, D.C.; Moser, D.K. Examination of the Potential Association of Stress with Morbidity and Mortality Outcomes in Patient with Heart Failure. SAGE Open Med. 2014. [Google Scholar] [CrossRef]
- Foo, J.Y.Y.; Wan, Y.; Kostner, K.; Arivalagan, A.; Atherton, J.; Cooper-White, J.; Dimeski, G.; Punyadeera, C. NT-ProBNP Levels in Saliva and Its Clinical Relevance to Heart Failure. PLoS ONE 2012, 7, e48452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suska, A.; Alehagen, U.; Lundstrom, I.; Dahlstrom, U. Salivary Alpha-Amylase Activity, a New Biomarker in Heart Failure? J. Clin. Exp. Cardiolog. 2012. [Google Scholar] [CrossRef] [Green Version]
- Wolfram, R.; Oguogho, A.; Palumbo, B.; Sinzinger, H. Enhanced Oxidative Stress in Coronary Heart Disease and Chronic Heart Failure as Indicated by an Increased 8-epi-PGF (2alpha). Eur. J. Heart Fail. 2005, 7, 167–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jekell, A.; Hossain, A.; Alehagen, U.; Dahlström, U.; Rosén, A. Elevated Circulating Levels of Thioredoxin and Stress in Chronic Heart Failure. Eur. J. Heart Fail. 2004, 6, 883–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denver, R.; Tzanidis, A.; Martin, P.; Krum, H. Salivary Endothelin Concentrations in the Assessment of Chronic Heart Failure. Lancet 2000, 355, 468–469. [Google Scholar] [CrossRef]
- White, A.G.; Gordon, H.; Leiter, L. Studies in Edema. II. The Effect of Congestive Heart Failure on Saliva Electrolyte Concentrations. J. Clin. Investig. 1950, 11, 1445–1447. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 29, 372. [Google Scholar]
- Tzanis, G.; Dimopoulos, S.; Agapitou, V.; Nanas, S. Exercise intolerance in chronic heart failure: The role of cortisol and the catabolic state. Curr. Heart Fail. Rep. 2014, 11, 70–79. [Google Scholar] [CrossRef]
- Yamaji, M.; Tsutamoto, T.; Kawahara, C.; Nishiyama, K.; Yamamoto, T.; Fuji, M.; Horie, M. Serum cortisol as a useful predictor of cardiac events in patients with chronic heart failure: The impact of oxidative stress. Circ. Heart Fail. 2009, 2, 608–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güder, G.; Bauersachs, J.; Frantz, S.; Weismann, D.; Allolio, B.; Ertl, G.; Angermann, C.; Stork, S. Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation 2007, 115, 1754–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, J.G.; Bagley, C.J.; Elder, P.A.; Bachmann, A.W.; Torpy, D.J. Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin. Clin. Chim. Acta 2005, 359, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Van der Velde, A.R.; Gullestad, L.; Ueland, T.; Aukrust, P.; Guo, Y.; Adourian, A.; Muntendam, P.; van Veldhuisen, D.J.; de Boer, R.A. Prognostic value of changes in galectin-3 levels over time in patients with heart failure: Data from CORONA and COACH. Circ. Heart Fail. 2013, 6, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Qian, X.; Chen, G.; Song, X. The role of galectin-3 in heart failure and cardiovascular disease. Clin. Exp. Pharmacol. Physiol. 2019, 46, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieper-Bigelow, C.; Strocchi, A.; Levitt, M.D. Where does serum amylase come from and where does it go? Gastroenterol. Clin. N. Am. 1990, 19, 793–810. [Google Scholar] [CrossRef]
- Parissis, J.T.; Adamopoulos, S.N.; Venetsanou, K.F.; Karas, S.M.; Kremastinos, D.T. Elevated plasma amylase levels in advanced chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy: Correlation with circulating interleukin-6 activity. J. Interf. Cytokine Res. 2003, 23, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Vozgirdaite, D.; Ben Halima, H.; Bellagambi, F.G.; Alcacer, A.; Palacio, F.; Zine, N.; Bausells, J.; Errachid, A. Development of an ImmunoFET for the detection of TNF-α in saliva: Application to heart failure monitoring. Chemosensors 2021, 9, 26. [Google Scholar] [CrossRef]
- Bozkurt, B.; Mann, D.L.; Deswal, A. Biomarkers of inflammation in heart failure. Heart Fail. Rev. 2010, 15, 331–341. [Google Scholar] [CrossRef]
- Afakan, B.; Ozturk, V.O.; Pasali, C.; Bozkurt, E.; Kose, T.; Emingil, G. Gingival crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal health and disease. Periodontology 2019, 90, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Nandan, S.R.K.; Kulkarni, P.G. Salivary Tumour Necrosis Factor-α as a Biomarker in Oral Leukoplakia and Oral Squamous Cell Carcinoma. Asian Pac. J. Cancer Prev. 2019, 20, 2087–2093. [Google Scholar]
- Levine, B.; Kalman, J.; Mayer, L.; Fillit, H.M.; Packer, M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N. Engl. J. Med. 1990, 323, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D. Novel biomarkers in heart failure. What they add in daily clinical practice? Hell. J. Cardiol. 2018, 59, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Loppnow, H.; Werdan, K.; Werner, C. The enhanced plasma levels of soluble tumor necrosis factor receptors (sTNF-R1; sTNF-R2) and interleukin-10 (IL-10) in patients suffering from chronic heart failure are reversed in patients treated with beta-adrenoceptor antagonist. Auton. Autacoid Pharmacol. 2002, 22, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.L. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ. Res. 2015, 116, 1254–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtsuka, T.; Hamada, M.; Hiasa, G.; Sasaki, O.; Suzuki, M.; Hara, Y.; Shigematsu, Y.; Hiwada, K. Effect of beta-blockers on circulating levels of inflammatory and anti-inflammatory cytokines in patients with dilated cardiomyopathy. JACC 2001, 37, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Ouwerker, W.; Zwinderman, A.H.; Ng, L.L.; Demissei, B.; Hillege, H.L.; Zannad, F.; van Veldhuisen, D.J.; Samani, N.J.; Ponikowski, P.; Metra, M.; et al. Biomarker-Guided Versus Guideline-Based Treatment of Patients with Heart Failure: Results From BIOSTAT-CHF. JACC 2018, 71, 386–398. [Google Scholar] [CrossRef]
- Upadhya, B.; Kitzman, D. Heart Failure with Preserved Ejection Fraction in Older Adult. Heart Fail. Clin. 2017, 13, 485–502. [Google Scholar] [CrossRef]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farell, J.J.; Paster, B.J.; Wong, D.T.W. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomonaco, T.; Ghimenti, S.; Biagini, D.; Bramanti, E.; Onor, M.; Bellagambi, F.B.; Fuoco, R.; Di Franscesco, F. The effect of sampling procedures on the urate and lactate concentration in oral fluid. Microchem. J. 2018, 136, 255–262. [Google Scholar] [CrossRef]
- Pathiyil, V.; Udayasankar, R. Saliva Diagnostics. In Saliva and Salivary Diagnostics; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Tripoliti, E.E.; Errachid, A.; Fotiadis, D.I.; Ioannidou, P.; Toumpaniaris, P.; Bechlioulis, A.; Rammos, A.; Gallagher, J.; Salvo, P.; Goletsis, Y.; et al. KardiaSoft Architecture-A Software Supporting Diagnosis and Therapy Monitoring of Heart Failure Patients Exploiting Saliva Biomarkers. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1382–1385. [Google Scholar]
Author | Year | Journal | n (HF) | Biomarker | Profile of HF Patients | Main Results |
---|---|---|---|---|---|---|
Klimiuk et al. [26]. | 2020 | J Clin Med | 50 | Amylase, UA | LVEF ≤35%, NYHA II (n = 33)—III (n = 17), variable etiology | Salivary Amylase secretion, concentration and activity were decreased in the HF compared to the matched control group, indicating secretory dysfunction of salivary glands in HF. Salivary UA concentration was significantly higher in non-stimulated saliva of NYHA III compared to NYHA II patients. In simulated saliva, the activity of UA was significantly higher in HF patients compared to controls. |
Ghimenti et al. [27]. | 2020 | Sci Rep | 44 | 8-isoPGF2α, Lactate, UA | Acute hospitalized HF, variable etiology and LVEF, NYHA I-IV | Salivary lactate and 8-isoPGF2α were strongly correlated with NT-proBNP. There was a significant decrease at discharge (p < 0.01 and p = 0.02 respectively), suggesting a relationship between salivary levels and clinical conditions during hospitalization. Only lactate was correlated (positively) to NYHA class. |
Zhang et al. [28]. | 2019 | Clin Res Cardiol | 105 | Gal-3 | HFrEF, NYHA I-III, variable etiology | HF patients with Gal-3 concentrations of >172.58 ng/mL demonstrated a higher cumulative risk of either cardiovascular death or hospitalization compared to those with lower levels (p < 0.05). In HF patients, salivary Gal-3 was a predictor of the primary endpoint even after adjustment for covariates (co- morbidities, chronic obstructive pulmonary disease, past history of HF, medication, presence of implantable cardioverter-defibrillator). |
Dekker et al. [29]. | 2017 | Biol Res Nurs | 75 | BNP, IL-6, IL-10, CRP | HFpEF or HFrEF, NYHA I-III, variable etiology | Moderate correlation was found for serum–salivary CRP, weak correlation for serum–salivary IL-6, and no correlations for serum–salivary BNP and IL-10. The Bland–Altman test showed good agreement between saliva and serum for all biomarkers. As serum concentrations increased, salivary measures underestimated serum levels. No biomarkers were associated with NYHA class. |
Joharimoghadam et al. [30]. | 2017 | Kardiol Pol | 70 | BNP | HFrEF, LVEF 25 ± 3% | Salivary BNP levels were higher in admitted HF (p < 0.001) and outpatient HF patients (p = 0.02) compared to the control group. Salivary BNP may be useful in the diagnosis and follow-up of patients with HF, especially in emergencies. |
Zhang et al. [31]. | 2017 | Theranostics | 36 | S10A7 | NYHA I-IV | Statistically significant differences (p < 0.05) were found between NYHA III/IV HF patients and controls. |
Hammer et al. [32]. | 2016 | Int J Cardiol | 229 | Cortisol | LVEF < 40%, NYHA III/IV, variable etiology | In univariate and multivariable models, the mortality risk of patients with the highest evening salivary cortisol was significantly increased, suggesting that associations of high evening salivary cortisol and increased mortality were independent of disease severity: crude HR 3.33 (p = 0.003), adjusted (for age, sex, NYHA class, and NT-proBNP) HR 2.49 (p = 0.047). Evening salivary cortisol was found to be the best predictor of mortality. |
Zhang et al. [33]. | 2016 | J Clin Pathol | 63 | Gal-3 | HFrEF, hospitalized or outpatients | Gal-3 concentrations were significantly elevated in saliva and serum of HF patients compared with controls (p < 0.001 and p < 0.0001, respectively). A moderate correlation (r = 0.4, p < 0.01) was found between serum and salivary levels. No differences among NYHA classes. Larger multi-centre clinical trials are needed before salivary Gal-3 can be implemented in a clinical setting. |
Alhurani et al. [34]. | 2014 | SAGE Open Medicine | 81 | Cortisol | HFpEF or HFrEF, NYHA I-IV, variable etiology | Salivary cortisol was a significant predictor of 6-month cardiac event-free survival in HF patients (unadjusted for covariates, p = 0.05). Stress and NYHA class were not significant predictors of salivary cortisol level p = 0.32 and p = 0.5 respectively). |
Foo et al. [35]. | 2012 | PLoS ONE | 45 | NT-proBNP | HFrEF, NYHA III | Saliva NT-proBNP was higher in HF patients compared to controls. Saliva concentrations were more than 200-fold lower than plasma. The salivary NT-proBNP had a sensitivity of 82.2% and specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3%, with an overall diagnostic accuracy of 90.6%. |
Suska et al. [36]. | 2012 | J Clin Exp Cardiol | 24 | sAA | NYHA I-III | No statistically significant difference in sAA levels was found between HF patients and controls. A strong tendency of higher morning values in patients was found, especially if measurements were done within 30 min after awakening. There was a strong inter- and intra-subject variation and a small number of participants. All HF patients were on b-blockers that are known to reduce the sAA levels. |
Wolfram et al. [37]. | 2005 | Eur J Heart Fail | 40 | 8-epiPGF2α | Dilated (n = 20) and Ischemic cardiomyopathy (n = 20), HFpEF and HFrEF | 8-epiPGF2α levels were correlated positively with NYHA class and negatively with LVEF, while they were significantly higher in patients with ischemic and dilated cardiomyopathy compared to controls and patients with coronary heart disease (p = 0.001). |
Jekell et al. [38]. | 2004 | Eur J Heart Fail | 27 | Cortisol | HFpEF or HFrEF, NYHA II-III, variable etiology | HF patients had higher morning levels of free cortisol than controls (p = 0.0002). |
Denver et al. [39]. | 2000 | Lancet | 44 | Endothelin | Chronic HFrEF, NYHA I-IV, variable etiology | Salivary endothelin concentrations were raised 2–to-6-fold in HF vs. controls (p = 0.005) and could detect HF with a sensitivity of 63% and specificity of 92%. A positive correlation between salivary and plasma endothelin concentrations was found in HF patients (p = 0.032). Endothelin levels were not significantly correlated to NYHA class when controls were excluded from analysis. |
White et al. [40]. | 1950 | J Clin Invest | 27 | Sodium, Chloride, Potassium | Congestive HF | Congestive HF was associated with lower sodium, lower chloride, and higher potassium concentrations in saliva compared to controls. Saliva of subjects on salt-poor diets did not show significant differences in electrolyte concentrations between HF patients and controls. No relationship in electrolyte concentrations between serum and saliva was found. |
Author [Reference] | Year | Saliva Biomarker | Range (In Total Study Population) | Correlation between Saliva and Serum Levels | Clinical Usefulness |
---|---|---|---|---|---|
Foo et al. [35]. | 2012 | NT-proBNP | 18.3–748.7 pg/mL | No correlation found | Diagnosis |
Joharimoghadam et al. [30]. | 2017 | BNP | 4.96–6.85 ng/L | Not assessed | Diagnosis Monitoring |
Denver et al. [39]. | 2000 | Endothelin | 0.50–23.56 fmol/mL | r = 0.536, p = 0.032 | Diagnosis Monitoring |
Zhang et al. [33]. | 2016 | Gal-3 | 2.8–2510 ng/mL | r = 0.4, p < 0.01 | Diagnosis |
Zhang et al. [28]. | 2019 | Gal-3 | 16.04–869.3 ng/mL | Not assessed | Prognosis (association with cardiovascular death or hospitalization) |
Zhang et al. [33]. | 2017 | S10A7 | Not assessed | Not assessed | Diagnosis |
Hammer et al. [32]. | 2016 | Cortisol | 0.08–1.28 ng/mL | Not assessed | Prognosis (association with mortality) |
Alhurani et al. [34]. | 2014 | Cortisol | 0.09–0.55 μg/dL | Not assessed | Prognosis (association with cardiac event free-survival) |
Jekell et al. [38]. | 2004 | Cortisol | 15–23 nmol/L | Not assessed | Monitoring |
Klimiuk et al. [26]. | 2020 | Uric Acid | 0.5818–0.862 ng/mL | Not assessed | Diagnosis, Monitoring |
Ghimenti et al. [27]. | 2020 | 8-isoPGF2α | 25–60 pg/mL | Not assessed | Monitoring |
Wolfram et al. [37]. | 2005 | 8-epiPGF2α | 43–111 pg/mL | Not assessed | Diagnosis, Monitoring |
Ghimenti et al. [27]. | 2020 | Lactate | 190–3790 mmol/L | Not assessed | Monitoring |
Klimiuk et al. [26]. | 2020 | Amylase | 0.12–0.21 μmol/mg | Not assessed | Diagnosis (lower levels in HF) |
White et al. [40] | 1950 | Sodium Chloride Potassium | 7.4–27.9 12.8–30.8 16.2–29.7 mEq/L | No correlation found | Monitoring |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rammos, A.; Bechlioulis, A.; Kalogeras, P.; Tripoliti, E.E.; Goletsis, Y.; Kalivi, A.; Blathra, E.; Salvo, P.; Trivella, M.G.; Lomonaco, T.; et al. Salivary Biomarkers for Diagnosis and Therapy Monitoring in Patients with Heart Failure. A Systematic Review. Diagnostics 2021, 11, 824. https://doi.org/10.3390/diagnostics11050824
Rammos A, Bechlioulis A, Kalogeras P, Tripoliti EE, Goletsis Y, Kalivi A, Blathra E, Salvo P, Trivella MG, Lomonaco T, et al. Salivary Biomarkers for Diagnosis and Therapy Monitoring in Patients with Heart Failure. A Systematic Review. Diagnostics. 2021; 11(5):824. https://doi.org/10.3390/diagnostics11050824
Chicago/Turabian StyleRammos, Aidonis, Aris Bechlioulis, Petros Kalogeras, Evanthia E. Tripoliti, Yorgos Goletsis, Anna Kalivi, Effrosyni Blathra, Pietro Salvo, M. Giovanna Trivella, Tommaso Lomonaco, and et al. 2021. "Salivary Biomarkers for Diagnosis and Therapy Monitoring in Patients with Heart Failure. A Systematic Review" Diagnostics 11, no. 5: 824. https://doi.org/10.3390/diagnostics11050824