Analysis of Gene Single Nucleotide Polymorphisms in COVID-19 Disease Highlighting the Susceptibility and the Severity towards the Infection
Abstract
:1. Introduction
1.1. ACE Gene
1.2. AACT-Serpina3 Gene
1.3. CRP Gene
1.4. IL-10 Gene
1.5. IL-6 Gene
1.6. IL-1 Gene
1.7. IL-1 RN Gene
1.8. IL-6 R Gene
1.9. TNFα Gene
1.10. IFNγ Gene
1.11. VDR Gene
2. Materials and Methods
2.1. Study Design
2.2. RT-PCR
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020, 581, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SeyedAlinaghi, S.; Mehrtak, M.; MohsseniPour, M.; Mirzapour, P.; Barzegary, A.; Habibi, P.; Moradmand-Badie, B.; Afsahi, A.M.; Karimi, A.; Heydari, M.; et al. Genetic susceptibility of COVID-19: A systematic review of current evidence. Eur. J. Med. Res. 2021, 26, 46. [Google Scholar] [CrossRef] [PubMed]
- Driggin, E.; Madhavan, M.V.; Bikdeli, B.; Chuich, T.; Laracy, J.; Biondi-Zoccai, G.; Brown, T.S.; Der Nigoghossian, C.; Zidar, D.A.; Haythe, J.; et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J. Am. Coll. Cardiol. 2020, 75, 2352–2371. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balzanelli, M.G.; Distratis, P.; Catucci, O.; Amatulli, F.; Cefalo, A.; Lazzaro, R.; Aityan, K.S.; Dalagni, G.; Nico, A.; De Michele, A.; et al. Clinical and diagnostic findings in COVID-19 patients: An original research from SG Moscati Hospital in Taranto Italy. J. Biol. Regul. Homeost. Agents 2021, 35, 171–183. [Google Scholar]
- Abdelzaher, H.; Saleh, B.M.; Ismail, H.A.; Hafiz, M.; Gabal, M.A.; Mahmoud, M.; Hashish, S.; Gawad, R.M.A.; Gharieb, R.Y.; Abdelnaser, A. COVID-19 Genetic and Environmental Risk Factors: A Look at the Evidence. Front. Pharmacol. 2020, 11, 579415. [Google Scholar] [CrossRef]
- Hu, J.; Li, C.; Wang, S.; Li, T.; Zhang, H. Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data. Hum. Genom. 2021, 15, 10. [Google Scholar] [CrossRef]
- Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents 2020, 34, 327–331. [Google Scholar]
- Brull, D.J.; Montgomery, H.E.; Sanders, J.; Dhamrait, S.; Luong, L.; Rumley, A.; Lowe, G.D.; Humphries, S.E. Interleukin-6 gene -174g>c and -572g>c promoter polymorphisms are strong predictors of plasma interleukin-6 levels after coronary artery bypass surgery. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1458–1463. [Google Scholar] [CrossRef]
- Doyle, W.J.; Casselbrant, M.L.; Li-Korotky, H.S.; Doyle, A.P.; Lo, C.Y.; Turner, R.; Cohen, S. The interleukin 6 -174 C/C genotype predicts greater rhinovirus illness. J. Infect. Dis. 2010, 201, 199–206. [Google Scholar] [CrossRef]
- Jacob, C.O. On the genetics and immunopathogenesis of COVID-19. Clin. Immunol. 2020, 220, 108591. [Google Scholar] [CrossRef] [PubMed]
- Godri Pollitt, K.J.; Peccia, J.; Ko, A.I.; Kaminski, N.; Dela Cruz, C.S.; Nebert, D.W.; Reichardt, J.; Thompson, D.C.; Vasiliou, V. COVID-19 vulnerability: The potential impact of genetic susceptibility and airborne transmission. Hum. Genom. 2020, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Gubernatorova, E.O.; Gorshkova, E.A.; Polinova, A.I.; Drutskaya, M.S. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 2020, 53, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.V. Evolution, revolution and heresy in the genetics of infectious disease susceptibility. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2012, 367, 840–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoyama, S.; Keicho, N.; Quy, T.; Phi, N.C.; Long, H.T.; Ha, L.D.; Ban, V.V.; Ohashi, J.; Hijikata, M.; Matsushita, I.; et al. ACE1 polymorphism and progression of SARS. Biochem. Biophys. Res. Commun. 2004, 323, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.L.; Peiris, J.S. Association of cytokine and chemokine gene polymorphisms with severe acute respiratory syndrome. Hong Kong Med. J. 2009, 15, 43–46. [Google Scholar] [PubMed]
- Inchingolo, F.; Martelli, F.S.; Gargiulo Isacco, C.; Borsani, E.; Cantore, S.; Corcioli, F.; Boddi, A.; Nguyen, K.C.D.; De Vito, D.; Aityan, S.K.; et al. Chronic Periodontitis and Immunity, Towards the Implementation of a Personalized Medicine: A Translational Research on Gene Single Nucleotide Polymorphisms (SNPs) Linked to Chronic Oral Dysbiosis in 96 Caucasian Patients. Biomedicines 2020, 8, 115. [Google Scholar] [CrossRef]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef]
- Sameer, A.S.; Syeed, N.; Tak, S.A.; Bashir, S.; Nissar, S.; Siddiqi, M.A. ACE I/D Polymorphism in Hypertensive Patients of Kashmiri Population. Cardiol. Res. 2010, 1, 1–7. [Google Scholar]
- Yamamoto, N.; Ariumi, Y.; Nishida, N.; Yamamoto, R.; Bauer, G.; Gojobori, T.; Shimotohno, K.; Mizokami, M. SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene 2020, 758, 144944. [Google Scholar] [CrossRef]
- Ristić, S.; Pavlić, S.D.; Nadalin, S.; Čizmarević, N.S. ACE I/D polymorphism and epidemiological findings for COVID-19: One year after the pandemic outbreak in Europe. J. Infect. 2021, 83, 381–412. [Google Scholar] [CrossRef] [PubMed]
- Adamzik, M.; Frey, U.; Sixt, S.; Knemeyer, L.; Beiderlinden, M.; Peters, J.; Siffert, W. ACE I/D but not AGT (-6)A/G polymorphism is a risk factor for mortality in ARDS. Eur. Respir. J. 2007, 29, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, C.; Annunziata, A.; Coppola, A.; Pafundi, P.C.; Guarino, S.; Di Spirito, V.; Maddaloni, V.; Pepe, N.; Fiorentino, G. ACE Gene I/D Polymorphism and Acute Pulmonary Embolism in COVID-19 Pneumonia: A Potential Predisposing Role. Front. Med. 2021, 7, 631148. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.; Albaiceta, G.M.; García-Clemente, M.; López-Larrea, C.; Amado-Rodríguez, L.; Lopez-Alonso, I.; Hermida, T.; Enriquez, A.I.; Herrero, P.; Melón, S.; et al. Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene 2020, 762, 145102. [Google Scholar] [CrossRef]
- Gong, G.C.; Song, S.R.; Xu, X.; Luo, Q.; Han, Q.; He, J.X.; Su, J. Serpina3n is closely associated with fibrotic procession and knockdown ameliorates bleomycin-induced pulmonary fibrosis. Biochem. Biophys. Res. Commun. 2020, 532, 598–604. [Google Scholar] [CrossRef]
- Chelbi, S.T.; Wilson, M.L.; Veillard, A.C.; Ingles, S.A.; Zhang, J.; Mondon, F.; Gascoin-Lachambre, G.; Doridot, L.; Mignot, T.M.; Rebourcet, R.; et al. Genetic and epigenetic mechanisms collaborate to control SERPINA3 expression and its association with placental diseases. Hum. Mol. Genet. 2012, 21, 1968–1978. [Google Scholar] [CrossRef] [Green Version]
- Dardiotis, E.; Hadjigeorgiou, G.M.; Dardioti, M.; Scarmeas, N.; Paterakis, K.; Aggelakis, K.; Komnos, A.; Tasiou, A.; Xiromerisiou, G.; Gabranis, I.; et al. Alpha-1 antichymotrypsin gene signal peptide a/t polymorphism and primary intracerebral hemorrhage. Eur. Neurol. 2008, 59, 307–314. [Google Scholar] [CrossRef]
- Krischek, B.; Akagawa, H.; Tajima, A.; Narita, A.; Kasuya, H.; Hori, T.; Inoue, I. The alanine/threonine polymorphism of the alpha-1-antichymotrypsin (SERPINA3) gene and ruptured intracranial aneurysms in the Japanese population. Cerebrovasc. Dis. 2007, 23, 46–49. [Google Scholar] [CrossRef]
- Aghagoli, G.; Gallo Marin, B.; Soliman, L.B.; Sellke, F.W. Cardiac involvement in COVID-19 patients: Risk factors, predictors, and complications: A review. J. Card. Surg. 2020, 35, 1302–1305. [Google Scholar] [CrossRef] [Green Version]
- Pai, J.K.; Mukamal, K.J.; Rexrode, K.M.; Rimm, E.B. C-reactive protein (CRP) gene polymorphisms, CRP levels, and risk of incident coronary heart disease in two nested case-control studies. PLoS ONE 2008, 3, e1395. [Google Scholar] [CrossRef] [Green Version]
- Carlson, C.S.; Aldred, S.F.; Lee, P.K.; Tracy, R.P.; Schwartz, S.M.; Rieder, M.; Liu, K.; Williams, O.D.; Iribarren, C.; Lewis, E.C.; et al. Polymorphisms within the C-reactive protein (CRP) promoter region are associated with plasma CRP levels. Am. J. Hum. Genet. 2005, 77, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.P.; Bagam, P.; Sahoo, M.K.; Batra, S. Immune-related gene polymorphisms in pulmonary diseases. Toxicology 2017, 383, 24–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, M.N.; Thompson, B.T.; Williams, P.L.; Zhou, W.; Wang, M.Z.; Pothier, L.; Christiani, D.C. Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome. Eur. Respir. J. 2006, 27, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, M.; Distratis, P.; Aityan, K.S.; Amatulli, F.; Catucci, O.; Cefalo, A.; D’Angela, G.; Dipalma, G.; Inchingolo, F.; Lazzaro, R.; et al. Clinical Features in Predicting COVID-19. Biomed. J. Sci Tec Res. 2020, 29, 22921–22926. [Google Scholar]
- Rokni, M.; Sarhad, M.; Nia, M.H.; Khosroshahi, L.M.; Asghari, S.; Sargazi., S.; Mirinejad, S.; Saravani, R. Single nucleotide polymorphisms located in TNFA, IL1RN, IL6R, and IL6 genes are associated with COVID-19 risk and severity in an Iranian population. Cell Biol. Int. 2022, 46, 1109–1127. [Google Scholar] [CrossRef]
- Aladawy, S.A.; Adel, L.A.; Abdel Salam, S.A.; Raafat, R.H.; Khattab, M.A. Polymorphism in promotor region of IL6 gene as a predictor for severity in COVID-19 -19 patients. Egypt J. Immunol. 2022, 29, 1–9. [Google Scholar] [CrossRef]
- Xiong, Y.; He, Y.; Peng, Y.; Geng, Y. Association of IL-6 and TGF-β Gene Polymorphisms with the Risk of Thoracolumbar Osteoporotic Vertebral Compression Fractures. Pharm. Pers. Med. 2022, 15, 351–358. [Google Scholar] [CrossRef]
- Yin, Y.W.; Li, J.C.; Zhang, M.; Wang, J.Z.; Li, B.H.; Liu, Y.; Liao, S.Q.; Zhang, M.J.; Gao, C.Y.; Zhang, L.L. Influence of interleukin-6 gene -174G>C polymorphism on development of atherosclerosis: A meta-analysis of 50 studies involving 33,514 subjects. Gene 2013, 529, 94–103. [Google Scholar] [CrossRef]
- Kaltoum, A.B.O. Mutations and polymorphisms in genes involved in the infection by COVID-19: A review. Gene Rep. 2021, 21, 101062. [Google Scholar] [CrossRef]
- Wypasek, E.; Potaczek, D.P.; Lamplmayr, M.; Sadowski, J.; Undas, A. Interleukin-6 receptor Asp358Ala gene polymorphism is associated with plasma C-reactive protein levels and severity of aortic valve stenosis. Clin. Chem. Lab. Med. 2014, 52, 1049–1056. [Google Scholar] [CrossRef]
- Hansen, P.R.; Nelveg-Kristensen, K.E.; Rasmussen, H.B.; Torp-Pedersen, C.; Køber, L.; Nielsen, C.H.; Enevold, C. Prognostic role of genetic polymorphisms of the interleukin-6 signaling pathway in patients with severe heart failure. Pharm. J. 2019, 19, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, R.; Ghezzi, P.; Dinarello, C.A. IL-1 induces IL-1. IV. IFN-gamma suppresses IL-1 but not lipopolysaccharide-induced transcription of IL-1. J. Immunol. 1990, 144, 2216–2222. [Google Scholar] [PubMed]
- Andrei, C.; Margiocco, P.; Poggi, A.; Lotti, L.V.; Torrisi, M.R.; Rubartelli, A. Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proc. Natl. Acad. Sci. USA 2004, 101, 9745–9750. [Google Scholar] [CrossRef] [PubMed]
- Witkin, S.S.; Gerber, S.; Ledger, W.J. Influence of interleukin-1 receptor antagonist gene polymorphism on disease. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2002, 34, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oda, K.; Tanaka, N.; Arai, T.; Araki, J.; Song, Y.; Zhang, L.; Kuchiba, A.; Hosoi, T.; Shirasawa, T.; Muramatsu, M. Polymorphisms in pro- and anti-inflammatory cytokine genes and susceptibility to atherosclerosis: A pathological study of 1503 consecutive autopsy cases. Hum. Mol. Genet. 2007, 16, 592–599. [Google Scholar] [CrossRef]
- VanderLaan, P.A.; Reardon, C.A.; Getz, G.S. Site specificity of atherosclerosis: Site-selective responses to atherosclerotic modulators. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta 2016, 1863, 1218–1227. [Google Scholar] [CrossRef]
- Skoog, T.; van’t Hooft, F.M.; Kallin, B.; Jovinge, S.; Boquist, S.; Nilsson, J.; Eriksson, P.; Hamsten, A. A common functional polymorphism (C→A substitution at position -863) in the promoter region of the tumour necrosis factor-alpha (TNF-alpha) gene associated with reduced circulating levels of TNF-alpha. Hum. Mol. Genet. 1999, 8, 1443–1449. [Google Scholar] [CrossRef] [Green Version]
- Chong, W.P.; Ip, W.K.; Tso, G.H.; Ng, M.W.; Wong, W.H.; Law, H.K.; Yung, R.W.; Chow, E.Y.; Au, K.L.; Chan, E.Y.; et al. The interferon gamma gene polymorphism +874 A/T is associated with severe acute respiratory syndrome. BMC Infect. Dis. 2006, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Scagnolari, C.; Vicenzi, E.; Bellomi, F.; Stillitano, M.G.; Pinna, D.; Poli, G.; Clementi, M.; Dianzani, F.; Antonelli, G. Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antivir. Ther. 2004, 9, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.J.; Gysemans, C.; Verstuyf, A.; Mathieu, A.C. Vitamin D’s Effect on Immune Function. Nutrients 2020, 12, 1248. [Google Scholar] [CrossRef] [PubMed]
- Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; Cefalo, A.; Catucci, O.; Aityan, S.K.; Dipalma, G.; Vimercati, L.; Inchingolo, A.D.; Maggiore, M.E.; et al. The Vitamin D, IL-6 and the eGFR Markers a Possible Way to Elucidate the Lung-Heart-Kidney Cross-Talk in COVID-19 Disease: A Foregone Conclusion. Microorganisms 2021, 9, 1903. [Google Scholar] [CrossRef] [PubMed]
- Abdollahzadeh, R.; Shushizadeh, M.H.; Barazandehrokh, M.; Choopani, S.; Azarnezhad, A.; Paknahad, S.; Pirhoushiaran, M.; Makani, S.Z.; Yeganeh, R.Z.; Al-Kateb, A.; et al. Association of Vitamin D receptor gene polymorphisms and clinical/severe outcomes of COVID-19 patients. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2021, 96, 105098. [Google Scholar] [CrossRef]
- Zepeda-Cervantes, J.; Martínez-Flores, D.; Ramírez-Jarquín, J.O.; Tecalco-Cruz, Á.C.; Alavez-Pérez, N.S.; Vaca, L.; Sarmiento-Silva, R.E. Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses 2022, 14, 94. [Google Scholar] [CrossRef]
- Chen, H.; Li, N.; Wan, H.; Cheng, Q.; Shi, G.; Feng, Y. Associations of three well-characterized polymorphisms in the IL-6 and IL-10 genes with pneumonia: A meta-analysis. Sci. Rep. 2015, 5, 8559. [Google Scholar] [CrossRef] [Green Version]
- Balzanelli, M.G.; Distratis, P.; Dipalma, G.; Vimercati, L.; Catucci, O.; Amatulli, F.; Cefalo, A.; Lazzaro, R.; Palazzo, D.; Aityan, S.K.; et al. Immunity Profiling of COVID-19 Infection, Dynamic Variations of Lymphocyte Subsets, a Comparative Analysis on Four Different Groups. Microorganisms 2021, 9, 2036. [Google Scholar] [CrossRef]
- Rhim, J.W.; Kang, J.H.; Lee, K.Y. Etiological and pathophysiological enigmas of severe coronavirus disease 2019, multisystem inflammatory syndrome in children, and Kawasaki disease. Clin. Exp. Pediatr. 2022, 65, 153–166. [Google Scholar] [CrossRef]
- Pham, V.H.; Gargiulo Isacco, C.; Nguyen, K.; Le, S.H.; Tran, D.K.; Nguyen, Q.V.; Pham, H.T.; Aityan, S.; Pham, S.T.; Cantore, S.; et al. Rapid and sensitive diagnostic procedure for multiple detection of pandemic Coronaviridae family members SARS-CoV-2, SARS-CoV, MERS-CoV and HCoV: A translational research and cooperation between the Phan Chau Trinh Univerity in Vietnam and University of Bari “Aldo Moro” in Italy. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7173–7191. [Google Scholar]
- Lee, K.Y.; Rhim, J.W.; Kang, J.H. Immunopathogenesis of COVID-19 and early immunomodulators. Clin. Exp. Pediatr. 2020, 63, 239–250. [Google Scholar] [CrossRef]
Gene | Locus | Protein Coding | ID SNP | Variant Information | Variation Effect | |
---|---|---|---|---|---|---|
ACE 2 | Chromosome Xp22.2 | Angiotensin converting Enzyme2 | rs1799752 | NG_011648.1:g.16471_16472ins | I/D | Intron variant |
SERPINA3 | Chromosome 14q32.1 | Serpin family A member 3 | rs1884082 | NG_012879.1:g.4964G>T | SNV | Upstream variant |
CRP | Chromosome 1q23.2 | C-reactive protein | rs1205 | NG_013007.1:g.7147G>A | SNV | 3 prime UTR variant |
IL1β | Chromosome 2q14.1 | Interleukin 1 beta | rs16944 | NG_008851.1:g.4490T>C | SNV | 2KB upstream variant |
rs1143634 | NG_008851.1:g.8967C>T | SNV | Synonymous variant | |||
IL1RN | Chromosome 2q14-q21 | Interleukin 1 receptor antagonist | rs419598 | NG_021240.1:g.16738T>C | SNV | Synonymous variant |
IL6 | Chromosome 7p15.3 | Interleukin 6 | rs1800796 | NG_011640.1:g.4481G>C | SNV | Non-coding Transcript Variant |
rs1800795 | NG_011640.1:g.4880C>G | SNV | Intron variant | |||
IL6R | Chromosome 1q21.3 | Interleukin 6 receptor | rs2228145 | NG_012087.1:g.54302A>C; NG_012087.1:g.54302A>T | SNV | Missense variant |
IL10 | Chromosome 1q32.1 | Interleukin-10 | rs1800896 | NG_012088.1:g.3943A>G | SNV | Intron variant |
TNFα | Chromosome 6p21.3 | Tumor necrosis factor alpha | rs1800629 | NG_007462.1:g.4682G>A | SNV | 2KB upstream variant |
IFNγ | Chromosome 12q15 | Interferon gamma | rs2430561 | NG_015840.1:g.6000A>T | SNV | Intron variant |
VDRs | Chromosome 12q13.11 | Vitamin D receptor | rs731236 * | NC_000012.12:g.47844974A>G | SNV | Initiator codon variant |
Vitamin D receptor | rs2228570 ** | NG_008731.1:g.30920T>C | SNV | Initiator codon variant | ||
Vitamin D receptor | rs1544410 *** | NC_000012.12:g.47846052C>T | SNV | Intron variant |
VDR | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACE2 | FokI | Bsm1 | TagI | Serpina3 | CRP | IL1β | IL6 | IL10 | IL1RN | IL6R | IFNγ | TNFα | ||||||||||||||||||||||||||||||||
rs1799752 | rs1884082 | rs1205 | rs16944 | rs1143634 | rs1800796 | rs1800795 | rs1800896 | rs419598 | rs2228145 | rs2430561 | rs1800629 | |||||||||||||||||||||||||||||||||
A | H | A | H | A | H | A | H | A | H | A | H | A | H | A | H | A | H | A | H | A | H | A | H | A | H | A | H | A | H | |||||||||||||||
D/D | 17 | 17 | T/T | 12 | 17 | T/T | 4 | 5 | A/A | 6 | 7 | G/G | 6 | 9 | G/G | 19 | 25 | C/C | 17 | 18 | C/C | 21 | 23 | G/G | 34 | 39 | C/C | 1 | 6 | A/A | 14 | 15 | T/T | 24 | 23 | A/A | 16 | 14 | A/A | 10 | 7 | G/G | 34 | 32 |
I/D | 20 | 18 | T/C | 23 | 19 | T/C | 17 | 19 | A/G | 24 | 20 | G/T | 25 | 23 | G/A | 19 | 17 | C/T | 23 | 21 | C/T | 19 | 18 | G/C | 5 | 3 | C/G | 11 | 23 | A/G | 16 | 24 | T/C | 16 | 14 | A/C | 22 | 23 | A/T | 17 | 26 | G/A | 7 | 7 |
I/I | 4 | 8 | C/C | 6 | 7 | C/C | 20 | 19 | G/G | 11 | 16 | T/T | 10 | 11 | A/A | 3 | 1 | T/T | 1 | 4 | T/T | 1 | 2 | C/C | 2 | 1 | G/G | 29 | 14 | G/G | 11 | 4 | C/C | 1 | 6 | C/C | 3 | 6 | T/T | 14 | 10 | A/A | 0 | 4 |
Variable Descriptive Analysis | |||||||
---|---|---|---|---|---|---|---|
Valid | Missing | Average | St. Dev. | Min | Max | ||
SpO2 mm Hg | COVID-19 | 41 | 0 | 66.62 | 18.71 | 36 | 124.8 |
Healthy | 43 | 0 | 87.50 | 0.00 | 87.5 | 87.5 | |
SpCO2 mm Hg | COVID-19 | 41 | 0 | 34.87 | 6.25 | 22.4 | 56.5 |
Healthy | 43 | 0 | 40.00 | 0.00 | 40 | 40 | |
pH | COVID-19 | 41 | 0 | 7.47 | 0.06 | 7.33 | 7.63 |
Healthy | 43 | 0 | 7.40 | 0.00 | 7.4 | 7.4 | |
IL6 | COVID-19 | 40 | 1 | 63.57 | 51.08 | 2 | 179 |
Healthy | 43 | 0 | 4.08 | 1.12 | 2 | 6.5 | |
VitD3 | COVID-19 | 40 | 1 | 3.63 | 0.69 | 5.7 | 54.4 |
Healthy | 43 | 0 | 3.93 | 0.56 | 45.7 | 76.8 |
Variable Descriptive Analysis | ||
---|---|---|
F | Sig. | |
SpO2 mm Hg | 53.55 | *** 0.000 |
SpCO2 mm Hg | 28.91 | *** 0.000 |
pH | 57.87 | *** 0.000 |
IL6 | 55.59 | *** 0.000 |
VitD3 | 291.426 | *** 0.000 |
Variables | Pearson’s r | p-Value |
---|---|---|
Healthy vs. COVID-19 | ||
SpO2 mm Hg | 0.631 | *** 0.000 |
SpCO2 mm Hg PH | 0.511 −0.643 | *** 0.000 *** 0.000 |
IL6 | −0.643 | *** 0.000 |
VitD3 | 0.892 | *** 0.000 |
Correlation between Variables | ||||||
---|---|---|---|---|---|---|
Variables | SpO2 mm Hg | SpCO2 mm Hg | pH | IL6 | VitD3 | |
SpO2 mm Hg | Pearson’s r | — | ||||
p-value | — | |||||
SpCO2 mm Hg | Pearson’s r | 0.252 | — | |||
p-value | ** 0.021 | — | ||||
pH | Pearson’s r | −0.448 | −0.548 | — | ||
p-value | *** 0.000 | *** 0.000 | — | |||
IL6 | Pearson’s r | −0.378 | −0.212 | 0.626 | — | |
p-value | *** 0.000 | 0.056 | *** 0.000 | — | ||
Vit. D3 | Pearson’s r | 0.063 | −0.053 | −0.087 | −0.163 | — |
p-value | 0.572 | 0.636 | 0.435 | 0.143 | — |
Model | Sum of Squares | df | Mean Square | F | p | |
---|---|---|---|---|---|---|
H1 | Regression | 17.200 | 5 | 3.440 | 75.190 | *** 0.000 |
Residual | 3.523 | 77 | 0.046 | |||
Total | 20.723 | 82 |
Coefficients | ||||||
---|---|---|---|---|---|---|
Model | Unstandardized | Standard Error | Standardized | t | p | |
H0 | (Intercept) | 1.518 | 0.055 | 27.511 | *** 0.000 | |
H1 | (Intercept) | 1.009 | 6.386 | 0.158 | 0.875 | |
SpO2 mm Hg | 0.004 | 0.002 | 0.140 | 2.001 | ** 0.049 | |
SpCO2 mm Hg | 0.010 | 0.007 | 0.103 | 1.564 | 0.122 | |
pH | −0.123 | 0.837 | −0.014 | −0.147 | 0.884 | |
IL6 | −3.788 × 10−4 | 8.923 × 10−4 | −0.035 | −0.425 | 0.672 | |
VitD3 | 0.017 | 0.002 | 0.728 | 11.051 | *** 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balzanelli, M.G.; Distratis, P.; Lazzaro, R.; Pham, V.H.; Tran, T.C.; Dipalma, G.; Bianco, A.; Serlenga, E.M.; Aityan, S.K.; Pierangeli, V.; et al. Analysis of Gene Single Nucleotide Polymorphisms in COVID-19 Disease Highlighting the Susceptibility and the Severity towards the Infection. Diagnostics 2022, 12, 2824. https://doi.org/10.3390/diagnostics12112824
Balzanelli MG, Distratis P, Lazzaro R, Pham VH, Tran TC, Dipalma G, Bianco A, Serlenga EM, Aityan SK, Pierangeli V, et al. Analysis of Gene Single Nucleotide Polymorphisms in COVID-19 Disease Highlighting the Susceptibility and the Severity towards the Infection. Diagnostics. 2022; 12(11):2824. https://doi.org/10.3390/diagnostics12112824
Chicago/Turabian StyleBalzanelli, Mario Giosuè, Pietro Distratis, Rita Lazzaro, Van Hung Pham, Toai Cong Tran, Gianna Dipalma, Angelica Bianco, Emilio Maria Serlenga, Sergey Khachatur Aityan, Valentina Pierangeli, and et al. 2022. "Analysis of Gene Single Nucleotide Polymorphisms in COVID-19 Disease Highlighting the Susceptibility and the Severity towards the Infection" Diagnostics 12, no. 11: 2824. https://doi.org/10.3390/diagnostics12112824