Enhanced Non-Invasive Diagnosis of Female Urinary Incontinence Using Static and Functional Transperineal Ultrasonography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Enrollment
2.2. Ultrasound Measurements
- Bladder–symphysis distance (BSD)—the distance between the neck of the urinary bladder and the symphysis;
- Alpha angle—the angle between the proximal urethral axis and the x-axis of the symphysis pubis (central line);
- Beta angle—the angle between the lines parallel to the proximal urethra and the distal axis of the urethra;
- Gamma angle—the angle between the lower margin of the symphysis pubis and the neck of the urinary bladder;
- Retrovesical angle (RVA)—the angle between the proximal urethral axis and the line tangential to the lowest part of the posterior wall of the urinary bladder;
- Mean urethral diameter—the sum of urethral diameters at points on the proximal, central, and distal parts divided by 3.
- The qualitative parameters were as follows:
- The total rotation urethral sign was defined as a significant disappearance of the characteristic hypoechogenic image of the inside of the urethra during the Valsalva maneuver;
- The funneling sign was defined as opening of the proximal urethra during the Valsalva maneuver or cough.
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Study Population
3.2. Static and Dynamic (Functional) Angles and Diameters
3.3. Urethral Diameters and Specific Sonographic Symptoms
3.4. Utility of Ultrasonographic Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wlazlak, E.; Grzybowska, M.E.; Rechberger, T.; Baranowski, W.; Rogowski, A.; Miotla, P.; Stangel-Wojcikiewicz, K.; Krzycka, M.; Kluz, T.; Narojczyk-Swiesciak, E.; et al. The Urogynecology Section of the Polish Society of Gynecologists and Obstetricians Guideline for the Diagnostic Assessment of Stress Urinary Incontinence in Women. Ginekol. Pol. 2023, 94, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Koelbl, H.; Strassegger, H.; Riss, P.A.; Gruber, H. Morphologic and Functional Aspects of Pelvic Floor Muscles in Patients with Pelvic Relaxation and Genuine Stress Incontinence. Obstet. Gynecol. 1989, 74, 789–795. [Google Scholar] [PubMed]
- Benson, J.T.; Sumners, J.E.; Pittman, J.S. Definition of Normal Female Pelvic Floor Anatomy Using Ultrasonographic Techniques. J. Clin. Ultrasound 1991, 19, 275–282. [Google Scholar] [CrossRef]
- Turkoglu, A.; Coskun, A.D.E.; Arinkan, S.A.; Vural, F. The Role of Transperineal Ultrasound in the Evaluation of Stress Urinary Incontinence Cases. Int. Braz. J. Urol. 2022, 48, 70–77. [Google Scholar] [CrossRef]
- Dietz, H.P. Ultrasound Imaging of the Pelvic Floor. Part I: Two-Dimensional Aspects. Ultrasound Obstet. Gynecol. 2004, 23, 80–92. [Google Scholar] [CrossRef]
- Pregazzi, R.; Sartore, A.; Bortoli, P.; Grimaldi, E.; Troiano, L.; Guaschino, S. Perineal Ultrasound Evaluation of Urethral Angle and Bladder Neck Mobility in Women with Stress Urinary Incontinence. BJOG Int. J. Obstet. Gynaecol. 2002, 109, 821–827. [Google Scholar] [CrossRef]
- Torella, M.; De Franciscis, P.; Russo, C.; Gallo, P.; Grimaldi, A.; Ambrosio, D.; Colacurci, N.; Schettino, M.T. Stress Urinary Incontinence: Usefulness of Perineal Ultrasound. Radiol. Med. 2014, 119, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Sarnelli, G.; Trovato, C.; Imarisio, M.; Talleri, D.; Braconi, A. Ultrasound Assessment of the Female Perineum: Technique, Methods, Indications and Ultrasound Anatomy. Radiol. Med. 2003, 106, 357–369. [Google Scholar] [PubMed]
- Al-Saadi, W.I. Transperineal Ultrasonography in Stress Urinary Incontinence: The Significance of Urethral Rotation Angles. Arab. J. Urol. 2016, 14, 66–71. [Google Scholar] [CrossRef]
- Yang, J.-M.; Huang, W.-C. Discrimination of Bladder Disorders in Female Lower Urinary Tract Symptoms on Ultrasonographic Cystourethrography. J. Ultrasound Med. 2002, 21, 1249–1255. [Google Scholar] [CrossRef]
- Wisam, A. Correlation between Genuine Stress Incontinence in Women and Bladder Neck Mobility as Assessed by Inter Labial Ultrasound Scan. Iraqi J. Comm. Med. 2010, 3, 169–172. [Google Scholar]
- Minardi, D.; Piloni, V.; Amadi, A.; El Asmar, Z.; Milanese, G.; Muzzonigro, G. Correlation between Urodynamics and Perineal Ultrasound in Female Patients with Urinary Incontinence. Neurourol. Urodyn. 2007, 26, 176–182; discussion 183–184. [Google Scholar] [CrossRef]
- DeLancey, J.O. Structural Aspects of the Extrinsic Continence Mechanism. Obstet. Gynecol. 1988, 72, 296–301. [Google Scholar]
- Eisenberg, V.H.; Chantarasorn, V.; Shek, K.L.; Dietz, H.P. Does Levator Ani Injury Affect Cystocele Type? Ultrasound Obstet. Gynecol. 2010, 36, 618–623. [Google Scholar] [CrossRef]
- Alper, T.; Cetinkaya, M.; Okutgen, S.; Kökçü, A.; Malatyalioğlu, E. Evaluation of Urethrovesical Angle by Ultrasound in Women with and without Urinary Stress Incontinence. Int. Urogynecology J. 2001, 12, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Sendag, F.; Vidinli, H.; Kazandi, M.; Itil, I.M.; Askar, N.; Vidinli, B.; Pourbagher, A. Role of Perineal Sonography in the Evaluation of Patients with Stress Urinary Incontinence. Aust. N. Z. J. Obstet. Gynaecol. 2003, 43, 54–57. [Google Scholar] [CrossRef]
- Kölbl, H.; Bernaschek, G.; Wolf, G. A Comparative Study of Perineal Ultrasound Scanning and Urethrocystography in Patients with Genuine Stress Incontinence. Arch. Gynecol. Obstet. 1988, 244, 39–45. [Google Scholar] [CrossRef]
- Al-Khuzaee, L.R.; Al-Saadi, W.I. Perineal Ultrasound for Evaluating Bladder Neck and Urethra in Stress Urinary Incontinence. Iraqi J. Med. Sci. 2012, 10, 367–374. [Google Scholar]
- Cendrowski, K.; Sawicki, W.; Śpiewankiewicz, B.; Stelmachów, J. Ultrasonographic Assessment of the Posterior Urethrovesical Angle Using the Transvaginal and Transperineal Method in Patients with Stress Urinary Incontinence. Ginekol. Pol. 1995, 66, 329–335. [Google Scholar]
- Haylen, B.T.; de Ridder, D.; Freeman, R.M.; Swift, S.E.; Berghmans, B.; Lee, J.; Monga, A.; Petri, E.; Rizk, D.E.; Sand, P.K.; et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) Joint Report on the Terminology for Female Pelvic Floor Dysfunction. Neurourol. Urodyn. 2010, 29, 4–20. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Song, X.; Yuan, X.; Cai, D.; Chen, J.; Li, L.; Du, G.; Yang, W.; Ye, Z. Application of Perineal Ultrasound Measurement and Urodynamic Study in the Diagnosis and Typing of Stress Urinary Incontinence Ultrasound and Urodynamic Study. Urol. J. 2013, 80, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Hajebrahimi, S.; Azaripour, A.; Sadeghi-Bazargani, H. Clinical and Transperineal Ultrasound Findings in Females with Stress Urinary Incontinence versus Normal Controls. Pak. J. Biol. Sci. 2009, 12, 1434–1437. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Z.; Ye, Z.; Zhang, J.; Yu, H. Correlation between Three-Dimensional Transperineal Ultrasound and Pelvic Floor Electromyography in Women with Stress Urinary Incontinence. Ginekol. Pol. 2023, 94, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Harms, L.; Emons, G.; Bader, W.; Lange, R.; Hilgers, R.; Viereck, V. Funneling before and after Anti-Incontinence Surgery—A Prognostic Indicator? Part 2: Tension-Free Vaginal Tape. Int. Urogynecology J. 2007, 18, 289–294. [Google Scholar] [CrossRef]
- Ornö, A.K.; Dietz, H.P. Levator Co-Activation Is a Significant Confounder of Pelvic Organ Descent on Valsalva Maneuver. Ultrasound Obstet. Gynecol. 2007, 30, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Morlacco, A.; Mancini, M.; Soligo, M.; Zattoni, F.; Calpista, A.; Vizzielli, G.; Patti, R.; Mandato, F.G.; Barneschi, A.C.; Zattoni, F.; et al. European Reference Network for rare UROGENital disease and complex conditions (ERN eUROGEN). Relevance of the Endoscopic Evaluation in the Diagnosis of Bladder Pain Syndrome/Interstitial Cystitis. Urology 2020, 144, 106–110. [Google Scholar] [CrossRef]
- Okuyan, E.; Cakir, C.; Gunakan, E.; Ozkaya, E.; Kucukozkan, T.; Sefik Ozyurek, E. Comparison of treatment results of urinary incontinence verified/or not verified with urodinamic evaluation by using UDI-6, IIQ-7 questionnaire forms. Ann. Med. Res. 2020, 27, 2094–2098. [Google Scholar] [CrossRef]
UI (n = 34) | Non-UI Control Group (n = 37) | p | |
---|---|---|---|
Age (years) | 55 (47–63) | 59 (49–66) | 0.23 |
BMI (kg/m2) | 25.6 (21.9–29.2) | 25.9 (24.9–29.1) | 0.45 |
Post-menopausal | 19 (55.9%) | 25 (70.2%) | 0.311 |
Number of deliveries (median, IQR) | 2 (2–3) | 2 (2–3) | 0.38 |
C-sections (median) | 0 | 0 | 0.55 |
Pelvic organ prolapse (n, %) | 27 (79.4%) | 25 (67.6%) | 0.26 |
Arterial hypertension (n, %) | 15 (44.1%) | 13 (35.1%) | 0.44 |
Diabetes (n, %) | 4 (11.8%) | 2 (5.4%) | 0.34 |
Chronic obstructive pulmonary disease (n, %) | 2 (5.9%) | 1 (2.7%) | 0.51 |
Urinary tract infection in the last year | 8 (23.5%) | 11 (29.7%) | 0.56 |
Total hysterectomy | 2 (5.9%) | 1 (2/7%) | 0.51 |
UI Group (n = 34) | Non-UI Group (n = 37) | p | |
---|---|---|---|
BSD at rest (mm) | 33 (29–35) | 30 (27–33) | 0.08 |
BSD during the Valsalva maneuver (mm) | 15 (13–20) | 23 (11–27) | 0.03 |
BSD during squeezing (mm) | 33.5 (30–36) | 31 (30–34) | 0.13 |
BSD difference between rest and the Valsalva maneuver (mm) | 16 (14–18) | 7 (4–16) | 0.002 |
α angle at rest (°) | 67 (57–81) | 70 (57–79) | 0.83 |
α angle during the Valsalva maneuver (°) | 125.5 (100–133) | 96 (81–130) | 0.045 |
α angle during squeezing (°) | 57.5 (54–67) | 60.5 (54–67) | 0.93 |
α angle difference between the Valsalva maneuver and rest (°) | 53.5 (39–62) | 31 (19–54) | 0.03 |
β angle at rest (°) | 19.5 (10–26) | 17 (12–23) | 0.91 |
β angle during the Valsalva maneuver (°) | 38 (23–45) | 22 (16–37) | 0.026 |
β angle during squeezing (°) | 16 (11–25) | 15 (11–21) | 0.73 |
β angle difference between the Valsalva maneuver and rest (°) | 16 (3–32) | 6 (−4–23) | 0.07 |
γ angle at rest (°) | 91.5 (86–98) | 94 (87–99) | 0.68 |
γ angle during the Valsalva maneuver (°) | 134 (122–141) | 118 (100–134) | 0.019 |
γ angle during squeezing (°) | 81.5 (70–92) | 82 (77–91) | 0.51 |
γ angle difference between the Valsalva maneuver and rest (°) | 41 (31–48) | 21 (10–42) | 0.005 |
RVA at rest (°) | 101 (94–110) | 94 (89–106) | 0.13 |
RVA during the Valsalva maneuver (°) | 114.5 (98–136) | 124 (102–135) | 0.78 |
RVA during squeezing (°) | 110 (96–120) | 102 (91–114) | 0.17 |
RVA difference between the Valsalva maneuver and rest (°) | 13.5 (3–32) | 20 (3–39) | 0.3 |
UI (n = 34) | Non-UI Control Group (n = 37) | p | |
---|---|---|---|
Internal urethral sphincter diameter (mm) | 6 (5–7) | 4 (4–5) | <0.001 |
Diameter of the central part of the urethra (mm) | 7 (7–8) | 5 (4–6) | <0.001 |
External urethral sphincter diameter (mm) | 9 (8–9) | 6 (5–6) | <0.001 |
Funneling sign (n, %) | 2 (5.9%) | 2 (5.4%) | 0.93 |
Funneling sign during the Valsalva maneuver (n, %) | 29 (85.3%) | 8 (21.6%) | <0.001 |
Total urethral rotation sign (n, %) | 21 (61.8%) | 17 (46%) | 0.18 |
OR | 95% CI | p-Value for the Variable | |
---|---|---|---|
Model 1: Ultrasound parameters based on anatomical angles and diameters (BSD; alpha, beta, gamma, and retrovesical angles; urethral diameter). | |||
BSD difference between rest and the Valsalva maneuver (mm) | 1.15 | 1.05–1.27 | 0.0039 |
Mean urethral diameter (mm) | 4.28 | 2.07–8.83 | 0.0001 |
Model 2: Presence of specific ultrasound qualitative signs | |||
Funneling sign during the Valsalva maneuver | 21 | 6.1–71.9 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrus, M.; Pityński, K.; Socha, M.W.; Gawron, I.; Biskupski-Brawura-Samaha, R.; Waligóra, M. Enhanced Non-Invasive Diagnosis of Female Urinary Incontinence Using Static and Functional Transperineal Ultrasonography. Diagnostics 2024, 14, 2549. https://doi.org/10.3390/diagnostics14222549
Pietrus M, Pityński K, Socha MW, Gawron I, Biskupski-Brawura-Samaha R, Waligóra M. Enhanced Non-Invasive Diagnosis of Female Urinary Incontinence Using Static and Functional Transperineal Ultrasonography. Diagnostics. 2024; 14(22):2549. https://doi.org/10.3390/diagnostics14222549
Chicago/Turabian StylePietrus, Milosz, Kazimierz Pityński, Maciej W. Socha, Iwona Gawron, Robert Biskupski-Brawura-Samaha, and Marcin Waligóra. 2024. "Enhanced Non-Invasive Diagnosis of Female Urinary Incontinence Using Static and Functional Transperineal Ultrasonography" Diagnostics 14, no. 22: 2549. https://doi.org/10.3390/diagnostics14222549