Adaptive Synchronization of Fractional-Order Complex-Valued Neural Networks with Discrete and Distributed Delays
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Numerical Simulations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Rakkiyappan, R.; Velmurugan, G.; Cao, J.D. Multiple μ-stability analysis of complex-valued neural networks with unbounded time-varying delays. Neurocomputing 2015, 149, 594–607. [Google Scholar] [CrossRef]
- Tu, Z.W.; Cao, J.D.; Alsaedi, A.; Alsaadi, F.E.; Hayat, T. Global lagrange stability of complex-valued neural networks of neutral type with time-varying delays. Complexity 2016, 21, 438–450. [Google Scholar] [CrossRef]
- Gong, W.Q.; Liang, J.L.; Cao, J.D. Global μ-stability of complex-valued delayed neural networks with leakage delay. Neurocomputing 2015, 168, 135–144. [Google Scholar] [CrossRef]
- Song, Q.K.; Zhao, Z.J.; Liu, Y.R. Stability analysis of complex-valued neural networks with probabilistic time-varying delays. Neurocomputing 2015, 159, 96–104. [Google Scholar] [CrossRef]
- Arena, P.; Fortuna, L.; Re, R.; Xibilia, M.G. Multilayer perceptrons to approximate complex valued functions. Int. J. Neural Syst. 1997, 6, 435–446. [Google Scholar] [CrossRef]
- Rosa, M.L.; Rabinovich, M.I.; Huerta, R.; Abarbanel, H.D.I.; Fortuna, L. Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh-Rose models. Phys. Lett. A 2000, 266, 88–93. [Google Scholar] [CrossRef]
- Song, Q.K.; Yan, H.; Zhao, Z.J.; Liu, Y.R. Global exponential stability of complex-valued neural networks with both time-varying delays and impulsive effects. Neural Netw. 2016, 79, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.K.; Shu, H.Q.; Zhao, Z.J.; Liu, Y.R.; Alsaadi, F.E. Lagrange stability analysis for complex-valued neural networks with leakage delay and mixed time-varying delays. Neurocomputing 2017, 244, 33–41. [Google Scholar] [CrossRef]
- Özdemir, N.; İskender, B.B.; Özgür, N.Y. Complex valued neural network with Möbius activation function. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4698–4703. [Google Scholar] [CrossRef]
- Nitta, T. Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters; IGI Global: Hershey, PA, USA, 2009. [Google Scholar]
- Velmurugan, G.; Rakkiyappan, R.; Vembarasan, V.; Cao, J.D.; Alsaedi, A. Dissipativity and stability analysis of fractional-order complex-valued neural networks with time delay. Neural Netw. 2017, 86, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Aizenberg, I. Complex-Valued Neural Networks with Multi-Valued Neurons; Springer: New York, NY, USA, 2011; pp. 39–62. [Google Scholar]
- Gong, W.Q.; Liang, J.L.; Zhang, C.J. Multistability of complex-valued neural networks with distributed delays. Neural Comput. Appl. 2017, 28, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Li, Z.; Li, K.N. Complex-valued neural network for online complex-valued time-varying matrix inversion. Appl. Math. Comput. 2011, 217, 10066–10073. [Google Scholar] [CrossRef]
- Hirose, A. Complex-Valued Neural Networks; Springer: Heidelberg, Germany, 2012; pp. 53–71. [Google Scholar]
- Huang, C.D.; Cao, J.D.; Xiao, M.; Alsaedi, A.; Hayat, T. Bifurcations in a delayed fractional complex-valued neural network. Appl. Math. Comput. 2017, 292, 210–227. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; pp. 41–117. [Google Scholar]
- Bai, Z.B.; Zhang, S.; Sun, S.J.; Yin, C. Monotone iterative method for fractional differential equations. Electron. J. Differ. Equ. 2016, 2016, 1–8. [Google Scholar]
- Bai, Z.B.; Dong, X.Y.; Yin, C. Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 2016, 2016, 63. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Shi, G.D. Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 2011, 62, 1531–1539. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.G.; Wang, Q. Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions. Neurocomputing 2016, 171, 1075–1084. [Google Scholar] [CrossRef]
- Magin, R.L.; Ingo, C. Entropy and information in a fractional order model of anomalous diffusion. IFAC Proc. Vol. 2012, 45, 428–433. [Google Scholar]
- Huang, X.; Fan, Y.J.; Jia, J.; Wang, Z.; Li, Y.X. Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches. IET Control Theory Appl. 2017, 11, 2317–2327. [Google Scholar] [CrossRef]
- Xi, H.L.; Li, Y.X.; Huang, X. Generation and nonlinear dynamical analyses of fractional-order memristor–based Lorenz systems. Entropy 2014, 16, 6240–6253. [Google Scholar]
- Gu, Y.J.; Yu, Y.G.; Wang, H. Synchronization-based parameter estimation of fractional-order neural networks. Physica A 2017, 483, 351–361. [Google Scholar] [CrossRef]
- Ding, X.S.; Cao, J.D.; Zhao, X.; Alsaadi, F.E. Finite-time Stability of Fractional-order Complex-valued Neural Networks with Time Delays. Neural Process. Lett. 2017, 46, 561–580. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.G.; Yu, J.Z. LMI Conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2423–2433. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.M.; Song, Q.K.; Liu, Y.R.; Zhao, Z.J.; Alsaadi, F.E. Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with both leakage and time-varying delays. Neurocomputing 2017, 245, 86–101. [Google Scholar]
- Jiang, C.M.; Liu, S.T.; Wang, D. Generalized Combination Complex Synchronization for Fractional-Order Chaotic Complex Systems. Entropy 2015, 17, 5199–5217. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Q.K.; Zhao, Z.J. Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays. Appl. Math. Comput. 2017, 298, 296–309. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, Z.; Wang, Z.; Li, Y.X. Chaos and hyperchaos in fractional-order cellular neural networks. Neurocomputing 2012, 94, 13–21. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, Z.; Jiang, P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw. 2014, 51, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hu, C.; Jiang, H.; Fan, X. Projective synchronization for fractional neural networks. Neural Netw. 2014, 49, 87–95. [Google Scholar]
- Ma, W.Y.; Li, C.P.; Wu, Y.J.; Wu, Y.Q. Adaptive Synchronization of Fractional Neural Networks with Unknown Parameters and Time Delays. Entropy 2014, 16, 6286–6299. [Google Scholar] [CrossRef]
- Kaslik, E.; Sivasundaram, S. Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 2012, 32, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.B.; Park, J.H.; Cao, J.D. Synchronization of fractional-order complex-valued neural networks with time delay. Neural Netw. 2016, 81, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.P.; Sang, C.Y.; Li, X.; Fang, M.Y.; Wang, Z. H∞ consensus for nonlinear stochastic multi-agent systems with time delay. App. Math. Comput. 2018, 325, 41–58. [Google Scholar] [CrossRef]
- Wang, J.; Liang, K.; Huang, X.; Wang, Z.; Shen, H. Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. App. Math. Comput. 2018. [Google Scholar] [CrossRef]
- Liang, K.; Dai, M.C.; Shen, H.; Wang, J.; Wang, Z.; Chen, B. L2 − L∞ synchronization for singularly perturbed complex networks with semi-Markov jump topology. Appl. Math. Comput. 2018, 321, 450–462. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Li, Y.X.; Cheng, Z.S. Stability and Hopf bifurcation of a three-neuron network with multiple discrete and distributed delays. Neural Process. Lett. 2018. [Google Scholar] [CrossRef]
- Cui, X.L.; Yu, Y.G.; Wang, H.; Hu, W. Dynamical analysis of memristor-based fractional-order neural networks with time delay. Mod. Phys. Lett. B 2016, 30, 1650271. [Google Scholar] [CrossRef]
- Gu, Y.J.; Yu, Y.G.; Wang, H. Synchronization for fractional-order time-delayed memristor-based neural networks with parameter uncertainty. J. Frankl. Inst. 2016, 353, 3657–3684. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Cao, J.D.; Velmurugan, G. Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, X.H.; Li, Y.X.; Huang, X. Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifurc. Chaos 2017, 27, 1750209. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Velmurugan, G.; Cao, J.D. Stability analysis of fractional-order complex-valued neural networks with time delays. Chaos Solitons Fractals 2015, 78, 297–316. [Google Scholar] [CrossRef]
- Rakkiyappan, R.; Velmurugan, G.; Cao, J.D. Finite-time stability analysis of fractional-order complex-valued memristor-based neural networks with time delays. Nonlinear Dyn. 2014, 78, 2823–2836. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, R.Y.; Liu, S.; Cao, J.D.; Alsaedi, A.; Li, X.D. LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays. Int. J. Syst. Sci. 2017, 49, 1–9. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, S.; Ye, E. Synchronization stability of memristor-based complex-valued neural networks with time delays. Neural Netw. 2017, 96, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, W.L.; Yang, X.S.; Xu, C.; Feng, J.W. Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations. Neural Process. Lett. 2017, 46, 271–291. [Google Scholar] [CrossRef]
- Li, X.F.; Fang, J.A.; Li, H.Y. Master-slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control. Neural Netw. 2017, 93, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.P.; Qu, J.F.; Chai, Y.; Wu, R.C.; Qi, G.Y. Synchronization of a Class of Fractional-Order Chaotic Neural Networks. Entropy 2013, 15, 3265–3276. [Google Scholar] [CrossRef]
- Wei, H.Z.; Li, R.X.; Chen, C.R.; Tu, Z.W. Stability analysis of fractional order complex-valued memristive neural networks with time delays. Neural Process. Lett. 2017, 45, 379–399. [Google Scholar] [CrossRef]
- Zhang, W.W.; Cao, J.D.; Chen, D.Y.; Alsaadi, F.E. Synchronization in fractional-order complex-valued delayed neural networks. Entropy 2018, 20, 54. [Google Scholar] [CrossRef]
- Bao, H.B.; Park, J.H.; Cao, J.D. Adaptive synchronization of fractional-order memristor-based neural networks with time delay. Nonlinear Dyn. 2015, 82, 1343–1354. [Google Scholar] [CrossRef]
- Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2951–2957. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.G.; Wang, H. Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal. 2015, 16, 104–121. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Wang, Z.; Lu, J.; Li, Y. Adaptive Synchronization of Fractional-Order Complex-Valued Neural Networks with Discrete and Distributed Delays. Entropy 2018, 20, 124. https://doi.org/10.3390/e20020124
Li L, Wang Z, Lu J, Li Y. Adaptive Synchronization of Fractional-Order Complex-Valued Neural Networks with Discrete and Distributed Delays. Entropy. 2018; 20(2):124. https://doi.org/10.3390/e20020124
Chicago/Turabian StyleLi, Li, Zhen Wang, Junwei Lu, and Yuxia Li. 2018. "Adaptive Synchronization of Fractional-Order Complex-Valued Neural Networks with Discrete and Distributed Delays" Entropy 20, no. 2: 124. https://doi.org/10.3390/e20020124
APA StyleLi, L., Wang, Z., Lu, J., & Li, Y. (2018). Adaptive Synchronization of Fractional-Order Complex-Valued Neural Networks with Discrete and Distributed Delays. Entropy, 20(2), 124. https://doi.org/10.3390/e20020124