Chaotic Attractors with Fractional Conformable Derivatives in the Liouville–Caputo Sense and Its Dynamical Behaviors
Abstract
:1. Introduction
2. Mathematical Preliminaries
- , for all .
- , for all
- , if is a constant.
- .
- .
3. Adams–Moulton Scheme for Fractional Conformable Derivatives
4. Application and Numerical Examples
- Rabinovich–Fabrikant attractor. The model of Rabinovich–Fabrikant [44] was initially designed as a physical model describing the stochasticity arising from the modulation instability in a non-equilibrium dissipative medium. The Rabinovich–Fabrikant system is described by the following equations:
- Observation. In the case when , we obtain the numerical solution of the Rabinovich–Fabrikant attractor in the Liouville–Caputo sense.
- Thomas’ cyclically symmetric attractor. Thomas in [45] proposed a mathematically three-dimensional cyclically symmetric attractor. This system is cyclically symmetric in the variables x, y, and z and considers a frictional damping b. The Thomas’ cyclically symmetric attractor is described by the following equations:
- Observation. In the case when , we obtain the numerical solution of the Thomas’ cyclically symmetric attractor in the Liouville–Caputo sense.
- Newton–Leipnik attractor. The Newton–Leipnik system model was obtained by modifying Euler’s rigid body equations with the addition of a linear feedback in 1981. For this example, we consider a 3D system of fractional order nonlinear autonomous differential equations known as Newton–Leipnik attractor [47,48]:
- Observation. In the case when , we obtain the numerical solution of the Newton–Leipnik attractor in the Liouville–Caputo sense.
- If the distance between two points is larger than 0
- The distance between two points is equal to 0, if and only if two points are overlapped
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kumar, D.; Singh, J.; Kumar, S. A fractional model of Navier-Stokes equation arising in unsteady flow of a viscous fluid. J. Assoc. Arab Univ. Basic Appl. Sci. 2015, 17, 14–19. [Google Scholar] [CrossRef]
- Bhrawy, A.H.; Zaky, M.A.; Baleanu, D. New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 2015, 67, 340–349. [Google Scholar]
- Liu, L.; Zheng, L.; Liu, F.; Zhang, X. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo-Christov flux. Commun. Nonlinear Sci. Numer. Simul. 2016, 38, 45–58. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Li, Y.; Huang, X. Stability and Hopf Bifurcation of Fractional-Order Complex-Valued Single Neuron Model with Time Delay. Int. J. Bifurc. Chaos 2017, 27, 1–13. [Google Scholar] [CrossRef]
- Vastarouchas, C.; Tsirimokou, G.; Freeborn, T.J.; Psychalinos, C. Emulation of an electrical-analogue of a fractional-order human respiratory mechanical impedance model using OTA topologies. AEU-Int. J. Electron. Commun. 2017, 78, 201–208. [Google Scholar] [CrossRef]
- Tsirimokou, G.; Psychalinos, C. Ultra-low voltage fractional-order circuits using current mirrors. Int. J. Circuit Theory Appl. 2016, 44, 109–126. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Shi, G. Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 2011, 62, 1531–1539. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractal electrodynamics via non-integer dimensional space approach. Phys. Lett. A 2015, 379, 2055–2061. [Google Scholar] [CrossRef]
- Gómez-Aguilar, J.F.; Yépez-Martínez, H.; Calderón-Ramón, C.; Benavidez-Cruz, M.; Morales-Mendoza, L.J. Fractional electromagnetic waves in conducting media. J. Electromagn. Waves Appl. 2016, 30, 259–271. [Google Scholar] [CrossRef]
- Wang, B.; Xue, J.; Wu, F.; Zhu, D. Stabilization conditions for fuzzy control of uncertain fractional order nonlinear systems with random disturbances. IET Control Theory Appl. 2016, 10, 637–647. [Google Scholar] [CrossRef]
- Nojavanzadeh, D.; Badamchizadeh, M. Adaptive fractional-order non-singular fast terminal sliding mode control for robot manipulators. IET Control Theory Appl. 2016, 10, 1565–1572. [Google Scholar] [CrossRef]
- Aslam, M.S.; Raja, M.A.Z. A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach. Signal Process. 2015, 107, 433–443. [Google Scholar] [CrossRef]
- Liu, D.Y.; Laleg-Kirati, T.M. Robust fractional order differentiators using generalized modulating functions method. Signal Process. 2015, 107, 395–406. [Google Scholar] [CrossRef]
- Rihan, F.A.; Lakshmanan, S.; Hashish, A.H.; Rakkiyappan, R.; Ahmed, E. Fractional-order delayed predator-prey systems with Holling type-II functional response. Nonlinear Dyn. 2015, 80, 777–789. [Google Scholar] [CrossRef]
- Sharma, M.; Ali, M.F.; Jain, R. Advanced generalized fractional kinetic equation in astrophysics. Prog. Fract. Differ. Appl. 2015, 1, 65–71. [Google Scholar]
- Iyiola, O.S.; Nwaeze, E.R. Some new results on the new conformable fractional calculus with application using D’Alambert approach. Progr. Fract. Differ. Appl. 2016, 2, 115–122. [Google Scholar] [CrossRef]
- Avcı, D.; Eroglu, B.B.I.; Özdemir, N. Conformable Fractional Wave-Like Equation on a Radial Symmetric Plate. In Theory and Applications of Non-integer Order Systems; Springer: Cham, Switzerland; Zakopane, Poland, 2017. [Google Scholar]
- Ziaei, E.; Farahi, M.H.; Safaie, E. The approximate solution of nonlinear fractional optimal control problems by measure theory approach. Progr. Fract. Differ. Appl. 2018, 4, 1–13. [Google Scholar]
- Yavuz, M.; Özdemir, N. European Vanilla Option Pricing Model of Fractional Order without Singular Kernel. Fractal Fract. 2018, 2, 3. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- M Caputo, M.F. A New Definition of Fractional Derivative without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Khalil, R.; al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Atangana, A. A novel model for the lassa hemorrhagic fever: deathly disease for pregnant women. Neural Comput. Appl. 2015, 26, 1895–1903. [Google Scholar] [CrossRef]
- Cenesiz, Y.; Baleanu, D.; Kurt, A.; Tasbozan, O. New exact solutions of Burgers’ type equations with conformable derivative. Waves Random Complex Media 2016, 27, 103–116. [Google Scholar] [CrossRef]
- He, S.; Sun, K.; Mei, X.; Yan, B.; Xu, S. Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative. Eur. Phys. J. Plus 2017, 132, 36. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Atangana, A.; Alsaedi, D.B.A. New properties of conformable derivative. Open Math. 2015, 13, 889–898. [Google Scholar] [CrossRef]
- Chung, W.S. Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 2015, 290, 150–158. [Google Scholar] [CrossRef]
- Cenesiz, Y.; Kurt, A. The new solution of time fractional wave equation with conformable fractional derivative definition. J. New Theory 2015, 7, 79–85. [Google Scholar]
- Atangana, A.; Ünlü, C. New groundwater flow equation with its exact solution. Scientia Iranica. Trans. B Mech. Eng. 2016, 23, 1837–1843. [Google Scholar]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
- Koca, I.; Atangana, A. Analysis of a nonlinear model of interpersonal relationships with time fractional derivative. J. Math. Anal. 2016, 7, 1–11. [Google Scholar]
- Atangana, A.; Alkahtani, B.S.T. Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter. Complexity 2016, 21, 442–451. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. On modeling the groundwater flow within a confined aquifer. Rom. J. Phys. 2015, 60, 573–582. [Google Scholar]
- Jarad, F.; Ugurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Taneco-Hernández, M.A. Analytical solutions of electrical circuits described by fractional conformable derivatives in Liouville–Caputo sense. AEU-Int. J. Electron. Commun. 2018, 85, 108–117. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed Error Analysis for a Fractional Adams Method. Numer. Algorithms 2004, 36, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Peng, G. Chaos in chen’s system with a fractional order. Chaos Solitons Fractals 2004, 22, 443–450. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29, 3–22. [Google Scholar] [CrossRef]
- Galeone, L.; Garrappa, R. Fractional Adams–Moulton methods. Math. Comput. Simul. 2008, 79, 1358–1367. [Google Scholar] [CrossRef]
- Zayernouri, M.; Matzavinos, A. Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system. J. Comput. Phys. 2016, 317. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Bulut, H. On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method. Open Math. 2015, 13, 547–556. [Google Scholar] [CrossRef]
- Rabinovich, M.I.; Fabrikant, A.L. Nonlinear waves in nonequilibrium media. Radiophys. Quantum Electron. 1976, 19, 508–543. [Google Scholar]
- Thomas, R. Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis, labyrinth chaos. Int. J. Bifurc. Chaos 1999, 9, 1889–1905. [Google Scholar] [CrossRef]
- Sprott, J.C.; Chlouverakis, K.E. Labyrinth chaos. Int. J. Bifurc. Chaos 2007, 17, 2097–2108. [Google Scholar] [CrossRef]
- Leipnik, R.B.; Newton, T.A. Double strange attractors in rigid body motion with linear feedback control. Phys. Lett. A 1981, 86, 63–67. [Google Scholar] [CrossRef]
- Sheu, L.J.; Chen, H.K.; Chen, J.H.; Tam, L.M.; Chen, W.C.; Lin, K.T.; Kang, Y. Chaos in the Newton–Leipnik system with fractional order. Chaos Solitons Fractals 2008, 36, 98–103. [Google Scholar] [CrossRef]
- Tusset, A.M.; Piccirillo, V.; Bueno, A.M.; Balthazar, J.M.; Sado, D.; Felix, J.L.P.; Brasil, R.M.L. Chaos control and sensitivity analysis of a double pendulum arm excited by an RLC circuit based nonlinear shaker. J. Vib. Control 2016, 22, 3621–3637. [Google Scholar] [CrossRef]
- Peruzzi, N.J.; Chavarette, F.R.; Balthazar, J.M.; Tusset, A.M.; Perticarrari, A.L.P.M.; Brasil, R.M.L. The dynamic behavior of a parametrically excited time-periodic MEMS taking into account parametric errors. J. Vib. Control 2016, 22, 4101–4110. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, J.E.S.; Gómez-Aguilar, J.F.; Baleanu, D.; Tchier, F. Chaotic Attractors with Fractional Conformable Derivatives in the Liouville–Caputo Sense and Its Dynamical Behaviors. Entropy 2018, 20, 384. https://doi.org/10.3390/e20050384
Pérez JES, Gómez-Aguilar JF, Baleanu D, Tchier F. Chaotic Attractors with Fractional Conformable Derivatives in the Liouville–Caputo Sense and Its Dynamical Behaviors. Entropy. 2018; 20(5):384. https://doi.org/10.3390/e20050384
Chicago/Turabian StylePérez, Jesús Emmanuel Solís, José Francisco Gómez-Aguilar, Dumitru Baleanu, and Fairouz Tchier. 2018. "Chaotic Attractors with Fractional Conformable Derivatives in the Liouville–Caputo Sense and Its Dynamical Behaviors" Entropy 20, no. 5: 384. https://doi.org/10.3390/e20050384
APA StylePérez, J. E. S., Gómez-Aguilar, J. F., Baleanu, D., & Tchier, F. (2018). Chaotic Attractors with Fractional Conformable Derivatives in the Liouville–Caputo Sense and Its Dynamical Behaviors. Entropy, 20(5), 384. https://doi.org/10.3390/e20050384