Linear Algebraic Beamforming Design for Multiuser MISO Interference Channels: A Reduction in Search Space Dimension
Abstract
:1. Introduction
1.1. Background
1.2. Main Contributions
1.3. Organization
- Boldface letters and represent vector and matrix, respectively.
- is zero matrix.
- We use the user index k, where .
- The transmit signal vector is denoted as of the kth user for the tth coding block.
- The channel vector from the jth transmitter to the kth receiver is denoted as , where the ith component of is the channel coefficient from the ith antenna at the jth transmitter to the kth receiver.
- The noise vector is denoted as for the tth coding block.
2. System Model
3. The Design of Proposed Near-Optimal Transmit Beamformers
3.1. Low SNR Approximation
3.2. High SNR Approximation
4. Computational Complexity
5. Numerical Evaluation
5.1. Simulation Environments
- Low and high SNR regimes.
- The number of transmit antennas.
- The correlation coefficient in Equation (15).
5.2. Low and High SNR Regimes
5.3. The Number of Transmit Antennas
5.4. The Correlation Coefficient
5.5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jorswieck, E.A.; Larsson, E.G.; Danev, D. Complete characterization of the Pareto boundary for the MISO interference channel. IEEE Trans. Signal Process. 2008, 56, 5292–5296. [Google Scholar] [CrossRef]
- Jorswieck, E.A.; Larsson, E.G. Monotonic optimization framework for the two-user MISO interference channel. IEEE Trans. Commun. 2010, 58, 2159–2168. [Google Scholar] [CrossRef]
- Zhang, R.; Cui, S. Cooperative interference management with MISO beamforming. IEEE Trans. Signal Process. 2010, 58, 5450–5458. [Google Scholar] [CrossRef]
- Mochaourab, R.; Jorswieck, E. Optimal beamforming in interference networks with perfect local channel information. IEEE Trans. Signal Process. 2011, 59, 1128–1141. [Google Scholar] [CrossRef]
- Shang, X.; Chen, B.; Poor, H.V. Multi-user MISO interference channel with single-user detection: Optimality of beamforming and the achievable rate region. IEEE Trans. Inf. Theory 2011, 57, 4255–4273. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, R.; Luo, Z.-Q.; Cui, S. Optimal distributed beamforming for MISO interference channels. IEEE Trans. Signal Process. 2011, 59, 5638–5643. [Google Scholar] [CrossRef]
- Mochaourab, R.; Jorswieck, E. Exchange economy in two-user multiple-input single-output interference channels. IEEE J. Sel. Top. Signal Process. 2012, 6, 151–164. [Google Scholar] [CrossRef]
- Björnson, E.; Bengtsson, M.; Otterson, B. Pareto characterization of the multicell MIMO performance region with simple receivers. IEEE Trans. Signal Process. 2012, 60, 4464–4469. [Google Scholar] [CrossRef]
- Lindblom, J.; Karipidis, E.; Larsson, E.G. Efficient computation of Pareto optimal beamforming vectors for the MISO interference channel with successive interference cancellation. IEEE Trans. Signal Process. 2013, 61, 4782–4795. [Google Scholar] [CrossRef]
- De Maio, A.; Piezzo, M.; Farina, A.; Wicks, M. Pareto-optimal radar waveform design. IET Radar Sonar Navig. 2011, 5, 473–482. [Google Scholar] [CrossRef]
- Ciuonzo, D.; de Maio, A.; Foglia, G.; Piezzo, M. Pareto-theory for enabling covert intrapulse radar-embedded communications. In Proceedings of the IEEE International Radar Conference, Arlington, VA, USA, 22–24 May 2015; pp. 292–297. [Google Scholar]
- Ciuonzo, D.; de Maio, A.; Foglia, G.; Piezzo, M. Intrapulse radar-embedded communications via multiobjective optimization. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2960–2974. [Google Scholar] [CrossRef]
- Yu, W.; Lan, T. Transmitter optimization for the multi-antenna downlink with per-antenna power constraints. IEEE Trans. Signal Process. 2007, 55, 2646–2660. [Google Scholar] [CrossRef]
- Shen, C.; Chang, T.-H.; Wang, K.-Y.; Qiu, Z.; Chi, C.-Y. Distributed robust multicell coordinated beamforming with imperfect CSI: An admm approach. IEEE Signal Process. 2012, 60, 2988–3003. [Google Scholar] [CrossRef]
- Xu, J.; He, R. Leakage-based probabilistic robust beamforming over MISO interference channel. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 22–24 October 2017; pp. 1–5. [Google Scholar]
- Sheng, Z.; Tuan, H.D.; Duong, T.Q.; Poor, H.V. Outage-aware secure beamforming in MISO wireless interference networks. IEEE Signal Process. Lett. 2018, 25, 956–960. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Alshomrani, S. SINR-constrained power minimization in MISO interference channel with imperfect CSI: A Bernstein approximation approach. In Proceedings of the IEEE Global Communication Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 4216–4220. [Google Scholar]
- Maso, M.; Lakshminarayana, S.; Atzeni, I.; Gupta, S. Energy as a commodity: Enhancing the sum-rate of MISO interference channels via energy cooperation. In Proceedings of the IEEE Globecom Workshops, San Diego, CA, USA, 6–10 December 2015; pp. 1–6. [Google Scholar]
- Choi, S.W. Near optimal beamforming design for efficient multi-user distributed communications. In Proceedings of the Information and Communication Technology Convergence (ICTC), Busan, Korea, 22–24 October 2014; pp. 498–499. [Google Scholar]
- Choi, S.W.; Kim, J. A convex approach to near-optimal beamforming designs for two-user MISO fading interference channels. IEEE Trans. Commun. 2017, 65, 3110–3122. [Google Scholar]
- Tse, D. Fundamentals of Wireless Communication; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Leon-Garcia, A. Probability and Random Processes for EE’s; Prentice-Hall: Upper Saddle River, NJ, USA, 2017. [Google Scholar]
- Hayes, M.H. Statistical Digital Signal Processing and Modeling; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Jafar, S.A.; Fakhereddin, M. Degrees of freedom for the MIMO interference channel. IEEE Trans. Inf. Theory 2007, 53, 2637–2642. [Google Scholar] [CrossRef]
- Wang, C.; Gou, T.; Jafar, S.A. Subspace alignment chains and the degrees of freedom of the three-user MIMO interference channel. IEEE Trans. Inf. Theory 2014, 60, 2432–2479. [Google Scholar] [CrossRef]
- Zheng, L.; Tse, D.N.C. Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Trans. Inf. Theory 2003, 49, 1073–1096. [Google Scholar] [CrossRef]
- Khatiwada, M.; Choi, S.W. On the interference management for K-user partially connected fading interference channels. IEEE Trans. Commun. 2012, 60, 3717–3725. [Google Scholar] [CrossRef]
- Shin, W.-Y.; Yoon, J. Generic iterative downlink interference alignment. IEICE Trans. Commun. 2015, E98-B, 834–841. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.W.; Shin, W.-Y.; Kim, J. Linear Algebraic Beamforming Design for Multiuser MISO Interference Channels: A Reduction in Search Space Dimension. Entropy 2018, 20, 431. https://doi.org/10.3390/e20060431
Choi SW, Shin W-Y, Kim J. Linear Algebraic Beamforming Design for Multiuser MISO Interference Channels: A Reduction in Search Space Dimension. Entropy. 2018; 20(6):431. https://doi.org/10.3390/e20060431
Chicago/Turabian StyleChoi, Sang Won, Won-Yong Shin, and Juyeop Kim. 2018. "Linear Algebraic Beamforming Design for Multiuser MISO Interference Channels: A Reduction in Search Space Dimension" Entropy 20, no. 6: 431. https://doi.org/10.3390/e20060431
APA StyleChoi, S. W., Shin, W. -Y., & Kim, J. (2018). Linear Algebraic Beamforming Design for Multiuser MISO Interference Channels: A Reduction in Search Space Dimension. Entropy, 20(6), 431. https://doi.org/10.3390/e20060431