Quantum Identity Authentication in the Counterfactual Quantum Key Distribution Protocol
Abstract
:1. Introduction
2. Review of the Counterfactual Quantum Key Distribution Protocol
3. QIA in the Counterfactual QKD System
3.1. The QIA Protocol Based on the Counterfactual QKD
- 2.1
- Alice generates a random string with m bits
- 2.2
- For the ith pulse Alice emits into the system, she sets the angle of HWPA as
- 2.3
- For the ith coming pulse, Bob sets the angle of HWPB as
- 2.4
- Alice checks the results of and . If clicks with the probability of 100% for the pulses where = 1, and for those = 0, and click with the probability about 25% and 25%, respectively, Alice believes Bob’s identity and they go on to Step 3, otherwise, Alice skips to the last step.
- 3.1
- Bob generates a random string with m bits
- 3.2
- For the th pulse, Alice sets the angle of HWPA as
- 3.3
- For the th coming pulse, Bob sets the angle of HWPB as
- 3.4
- Bob checks results of . If never clicks when = 0 and clicks with the probability of 50% for both the two cases that = 1, = and = 1, = , Bob believes Alice’s identity.
3.2. Correctness of the Proposed QIA Protocol
3.3. The Security Analysis for No-Error Cases
4. Authenticated Counterfactual QKD Protocol
- Alice emits single-photon pulses to the system one by one. For each pulse, Alice (Bob) randomly choose the angle of HWPA (HWPB) to be one of {0, , , }.
- If the photon goes to Bob’s detector, i.e., clicks and and do not, they record a classical bit 1. If the photon goes back to Alice, i.e., or clicks and does not, they record a classical bit 0.
- After all the pulses have been detected by the three detectors, Alice and Bob get a bit binary number. Then, they use a hash function to uniformly map the above number into the set , and denote the result as . Note that, for one single binary bit, the uncertainty isAlice and Bob produce signals here so that the uncertainty of the bits is larger than , to make the value of totally random.
- For the first pulses in this step, Alice and Bob perform the QKD process, i.e., they both randomly alter the angles of HWPA and HWPB to be 0 or and record the clicking situation of each detector and the state of the photon if the detector has clicked.
- The th pulse is the first pulse for identity authentication. As in Steps 2.2 and 2.3 in the above QIA protocol, Alice alters the angle of HWPA to be + and Bob alters the angle of HWPB to be , where is the first bit of the authentication key and is a random bit.
- From the th pulse, the participants start to insert the process of QIA into the QKD according to the random data of the clicks of the detectors. Precisely, each time the click times of reaches an integral multiple of r, they insert one round of the QIA process immediately until the authentication process for Bob’s identity has finished.
- Alice checks Bob’s identity according to Step 2.4.
- If the test for Bob’s identity passes, they continue to transmit the rest QKD signals and authenticate Alice’s identity by repeating the processes from to but perform the operations in Steps 3.2–3.4 instead of these in Steps 2.2–2.4, respectively.
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A. Security of the Counterfactual QIA Protocol
Appendix A.1. Security of Bob’s Identity
Appendix A.2. Security of Alice’s Identity
References
- Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994. [Google Scholar]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 9–12 December 1984. [Google Scholar]
- Lo, H.K.; Chau, H.F. Unconditional security of quantum key distribution over arbitrarily long distances. Science 1999, 283, 2050–2056. [Google Scholar] [CrossRef]
- Shor, P.W.; Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 2000, 85, 441–444. [Google Scholar] [CrossRef]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dusek, M.; Luetkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef] [Green Version]
- Long, G.-L.; Liu, X. Theoretically efficient high-capacity quantum key distribution scheme. Phys. Rev. A 2002, 65, 032302. [Google Scholar] [CrossRef]
- Deng, F.-G.; Long, G.-L. Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 2003, 68, 042315. [Google Scholar] [CrossRef]
- Bostrom, K.; Felbinger, T. Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 2002, 89, 187902. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wen, Q.-Y.; Zhu, F.-C. Quantum secure direct communication with x-type entangled states. Phys. Rev. A 2008, 78, 064304. [Google Scholar] [CrossRef]
- Gao, F.; Qin, S.-J.; Wen, Q.-Y.; Zhu, F.-C. Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 2010, 283, 192. [Google Scholar] [CrossRef]
- Huang, W.; Wen, Q.-Y.; Jia, H.-Y.; Qin, S.-J.; Gao, F. Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 2012, 21, 100308. [Google Scholar] [CrossRef]
- Cleve, R.; Gottesman, D.; Lo, H.K. How to share a quantum secret. Phys. Rev. Lett. 1999, 83, 648–651. [Google Scholar] [CrossRef]
- Hillery, M.; Buzek, V.; Berthiaume, A. Quantum secret sharing. Phys. Rev. A 1999, 59, 1829. [Google Scholar] [CrossRef]
- Yang, Y.-G.; Wen, Q.-Y.; Zhang, X. Multiparty simultaneous quantum identity authentication with secret sharing. Sci. China-Phys. Mech. Astron. 2008, 51, 321–327. [Google Scholar] [CrossRef]
- Qin, S.-J.; Gao, F.; Wen, Q.-Y.; Zhu, F.-C. Security of quantum secret sharing with two-particle entanglement against individual attacks. Quant. Inf. Comput. 2009, 9, 765–772. [Google Scholar]
- Lin, S.; Wen, Q.-Y.; Qin, S.-J.; Zhu, F.-C. Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 2009, 282, 4455–4459. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Wen, Q.-Y. Security of a kind of quantum secret sharing with single photons. Quant. Inf. Comput. 2011, 11, 434–443. [Google Scholar]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum private queries. Phys. Rev. Lett. 2008, 100, 230502. [Google Scholar] [CrossRef] [PubMed]
- Jakobi, M.; Simon, C.; Gisin, N.; Branciard, C.; Bancal, J.-D.; Walenta, N.; Zbinden, Z. Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 2011, 83, 022301. [Google Scholar] [CrossRef]
- Gao, F.; Qin, S.; Huang, W.; Wen, Q.Y. Quantum private query: A new kind of practical quantum cryptographic protocol. Sci. China Phys. Mech. Astron. 2019, 62, 70301. [Google Scholar] [CrossRef]
- Gao, F.; Liu, B.; Huang, W.; Wen, Q.Y. Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quant. 2015, 21, 6600111. [Google Scholar]
- Liu, B.; Gao, F.; Huang, W.; Wen, Q.Y. QKD-based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 2015, 58, 100301. [Google Scholar] [CrossRef]
- Wei, C.-Y.; Cai, X.-Q.; Liu, B.; Wang, T.-Y.; Gao, F. A generic construction of quantum-oblivious-transfer-based private query with ideal database security and zero failure. IEEE T Comput. 2018, 67, 2–8. [Google Scholar] [CrossRef]
- Huang, W.; Su, Q.; Xu, B.-J.; Liu, B.; Fan, F.; Jia, H.Y.; Yang, Y.H. Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astron. 2016, 59, 120311. [Google Scholar] [CrossRef]
- Huang, W.; Wen, Q.-Y.; Liu, B.; Su, Q.; Qin, S.-J.; Gao, F. Quantum anonymous ranking. Phys. Rev. A 2014, 89, 032325. [Google Scholar] [CrossRef]
- Xu, B.-J.; Chen, Z.-Y.; Li, Z.-Y.; Yang, J.; Su, Q.; Huang, W.; Zhang, Y.; Guo, H. High speed continuous variable source-independent quantum random number generation. Quantum Sci. Technol. 2019, 4, 025013. [Google Scholar] [CrossRef] [Green Version]
- Noh, T.-G. Counterfactual Quantum Cryptography. Phys. Rev. Lett. 2009, 103, 230501. [Google Scholar] [CrossRef]
- Kwiat, P.G.; White, A.G.; Mitchell, J.R.; Nairz, O.; Weihs, G.; Weinfurter, H.; Zeilinger, A. High-efficiency quantum interrogation measurements via the quantum Zeno effect. Phys. Rev. Lett. 1999, 83, 4725–4728. [Google Scholar] [CrossRef]
- Hosten, O.; Rakher, M.T.; Barreiro, J.T.; Peters, N.A.; Kwiat, P.G. Counterfactual quantum computation through quantum interrogation. Nature 2006, 439, 949–952. [Google Scholar] [CrossRef]
- Sun, Y.; Wen, Q.-Y. Counterfactual quantum key distribution with high efficiency. Phys. Rev. A 2010, 82, 052318. [Google Scholar] [CrossRef]
- Yin, Z.-Q.; Li, H.-W.; Chen, W.; Han, Z.-F.; Guo, G.-C. Security of counterfactual quantum cryptography. Phys. Rev. A 2010, 82, 042335. [Google Scholar] [CrossRef]
- Ren, M.; Wu, G.; Wu, E.; Zeng, H. Experimental demonstration of counterfactual quantum key distribution. Laser Phys. 2011, 21, 755–760. [Google Scholar] [CrossRef] [Green Version]
- Brida, G.; Cavanna, A.; Degiovanni, I.P.; Genovese, M.; Traina, P. Experimental realization of counterfactual quantum cryptography. Laser Phys. Lett. 2012, 9, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ju, L.; Liang, X.-L.; Tang, S.-B.; Tu, G.-L.S.; Zhou, L.; Peng, C.-Z.; Chen, K.; Chen, T.Y.; Chen, Z.-B.; et al. Experimental Demonstration of Counterfactual Quantum Communication. Phys. Rev. Lett. 2012, 109, 030501. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.-Q.; Li, H.-W.; Yao, Y.; Zhang, C.-M.; Wang, S.; Chen, W.; Guo, G.-C.; Han, Z.-F. Counterfactual quantum cryptography based on weak coherent states. Phys. Rev. A 2012, 86, 022313. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Tang, C.-J. Security proof of counterfactual quantum cryptography against general intercept-resend attacks and its vulnerability. Chin. Phys. B 2012, 21, 060303. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Tang, C.J. Counterfactual attack on counterfactual quantum key distribution. Europhys. Lett. 2012, 98, 30012. [Google Scholar] [CrossRef]
- Li, Y.-B. Analysis of counterfactual quantum key distribution using error-correcting theory. Quantum Inf. Process. 2014, 13, 2325–2342. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Wang, J.; Tang, C.; Zhao, J.; Zhang, S. Eavesdropping on counterfactual quantum key distribution with finite resources. Phys. Rev. A 2014, 90, 022318. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, X.; Jiang, D.; Xie, L.; Chen, L. Counterfactual quantum cryptography network with untrusted relay. Int. J. Mod. Phys. B 2015, 29, 1550134. [Google Scholar] [CrossRef]
- Yang, X.; Wei, K.; Ma, H.; Sun, S.; Du, Y.; Wu, L. Trojan horse attacks on counterfactual quantum key distribution. Phys. Lett. A 2016, 380, 1589–1592. [Google Scholar] [CrossRef]
- Salih, H.; Li, Z.-H.; Al-Amri, M.; Zubairy, M.S. Protocol for Direct Counterfactual Quantum Communication. Phys. Rev. Lett. 2013, 110, 170502. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.-H.; Cao, Z.; Yin, J.; Chen, Y.-A.; Yin, H.-L.; Chen, T.Y.; Ma, X.; Peng, C.Z.; Pan, J.W. Direct counterfactual communication via quantum Zeno effect. Proc. Natl. Acad. Sci. USA 2017, 114, 4920–4924. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. Probabilistic direct counterfactual quantum communication. Chin. Phys. B 2017, 26, 020304. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Guo, F.-Z.; Gao, F.; Liu, B.; Wen, Q.-Y. Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 2013, 88, 022334. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Tang, C.-J. Counterfactual Quantum Deterministic Key Distributionl. Commun. Theor. Phys. 2013, 59, 27–31. [Google Scholar] [CrossRef]
- Salih, H. Tripartite counterfactual quantum cryptography. Phys. Rev. A 2014, 90, 012333. [Google Scholar] [CrossRef]
- Shenoy, A.H.; Srikanth, R.; Srinivas, T. Counterfactual quantum certificate authorization. Phys. Rev. A 2014, 89, 052307. [Google Scholar] [CrossRef]
- Guo, Q.; Cheng, L.-Y.; Chen, L.; Wang, H.-F.; Zhang, S. Counterfactual quantum-information transfer without transmitting any physical particles. Sci. Rep. 2015, 5, 8516. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-H.; Al-Amri, M.; Zubairy, M.S. Direct counterfactual transmission of a quantum state. Phys. Rev. A 2015, 92, 052315. [Google Scholar] [CrossRef]
- Arvidsson-Shukur, D.R.M.; Barnes, C.H.W. Quantum counterfactual communication without a weak trace. Phys. Rev. A 2016, 94, 062303. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.-Y.; Li, Y.-P.; Zhang, R.-L. Analysis of Counterfactual Quantum Certificate Authorization. Int. J. Theor. Phys. 2016, 55, 5331–5335. [Google Scholar] [CrossRef]
- Guo, Q.; Zhai, S.; Cheng, L.-Y.; Wang, H.-F.; Zhang, S. Counterfactual quantum cloning without transmitting any physical particles. Phys. Rev. A 2017, 96, 052335. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Gao, Z.; Xiao, D.; Huang, W.; Zhang, Z.; Xu, B. Quantum Identity Authentication in the Counterfactual Quantum Key Distribution Protocol. Entropy 2019, 21, 518. https://doi.org/10.3390/e21050518
Liu B, Gao Z, Xiao D, Huang W, Zhang Z, Xu B. Quantum Identity Authentication in the Counterfactual Quantum Key Distribution Protocol. Entropy. 2019; 21(5):518. https://doi.org/10.3390/e21050518
Chicago/Turabian StyleLiu, Bin, Zhifeng Gao, Di Xiao, Wei Huang, Zhiqing Zhang, and Bingjie Xu. 2019. "Quantum Identity Authentication in the Counterfactual Quantum Key Distribution Protocol" Entropy 21, no. 5: 518. https://doi.org/10.3390/e21050518