Multiscale Entropy Feature Extraction Method of Running Power Equipment Sound
Abstract
:1. Introduction
2. Algorithm
2.1. ICEEMDAN
- (1)
- Calculate . For , the first residue is obtained by , where denotes ith added white Gaussian noise with zero mean and unit variance, I is the predefined ensemble sizes denoting the number of added , and denotes the action of averaging throughout the realizations of .
- (2)
- The first mode can be written as .
- (3)
- Calculated the second residue by , and the second mode can be expressed as .
- (4)
- For , the jth residue and jth mode can be obtained by and respectively, where J is the number of IMFs.
- (5)
- Repeat Step (4) until all IMFs are obtained.
2.2. Mutual Information, Mean Mutual Information and Normalized Mutual Information
2.3. MIPE
Algorithm 1: Extract multiscale improved permutation entropy (MIPE) vector form time series. |
2.4. Separability Criterion
2.5. Proposed Feature Extraction Method
- (1)
- Decompose the input signal by the ICEEMDAN algorithm to obtain a group of IMFs.
- (2)
- Calculate MI and meanMI of IMFs, and the signal IMFs can be identified by comparing MI of each IMF with meanMI (MI > meanMI).
- (3)
- Calculate norMI and MIPE of each signal IMF, respectively.
- (4)
- Use NorMI as the weight coefficient to weigh the corresponding MIPE results, and the weighted MIPE results are defined as the weighted sum.
- (5)
- Extract the multiscale entropy feature vector by applying the separability criterion for dimension reduction to the weighted MIPE results.
3. Algorithm Simulation
3.1. Analysis on Artificial Signal Based on ICEEMDAN
3.2. Analysis on Chaotic Signals Based on MIPE
4. Feature Extraction of Power Equipment Sound
4.1. Feature Extraction Based on ICEEMDAN and MIPE
4.2. Classification of Power Equipment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EMD | Empirical Mode Decomposition |
IMF | Intrinsic Mode Function |
EEMD | Ensemble Empirical Mode Decomposition |
CEEMDAN | Complementary Ensemble Empirical Mode Decomposition with Ddaptive Noise |
ICEEMDAN | Improved Complementary Ensemble Empirical Mode Decomposition with Ddaptive Noise |
SE | Sample Entropy |
FE | Fuzzy Entropy |
PE | Permutation Entropy |
IPE | Improved Permutation Entropy |
UQ | Uniform Quantification |
MIPE | Multiscale Improved Permutation Entropy |
norMI | Normalized Mutual Information |
SNR | Signal-to-Noise Ratio |
SD | Standard Deviation |
MI | Mutual Information |
meanMI | Mean Mutual Information |
SC | Separable Criterion Value |
MSE | Multiscale Sample Entropy |
MFE | Multiscale Fuzzy Entropy |
MPE | Multiscale Permutation Entropy |
SVM | Support Vector Machine |
References
- Basak, D.; Tiwari, A.; Das, S. Fault diagnosis and condition monitoring of electrical machines-A Review. In Proceedings of the 2006 IEEE International Conference on Industrial Technology, Mumbai, India, 15–17 December 2006; pp. 3061–3066. [Google Scholar]
- Zhai, Y.J.; Yang, X.; Peng, Y.N.; Wang, X.Y. Review of Research on State Monitoring of Electrical Equipment Based on Computer Hearing. Guangdong Electr. Power 2019, 32, 24–32. [Google Scholar]
- Zheng, Z.; Xin, G. Fault Feature Extraction of Hydraulic Pumps Based on Symplectic Geometry Mode Decomposition and Power Spectral Entropy. Entropy 2019, 21, 476. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, C.; Li, S.Y.; Zhang, L.J.; Shen, J. Multi-dimensional state monitoring and fault diagnosis of 500 kV Transformer. Power Syst. Big Data 2018, 21, 67–73. [Google Scholar]
- Yang, L. Discussion on Online Monitoring and Condition Based Maintenance Technology for Power Primary Equipment. Telecom Power Technol. 2018, 35, 62–64. [Google Scholar]
- Yu, Y.; Cao, H.; Wang, Z.; Li, Y.; Li, K.; Xie, S. Texture-and-shape based active contour model for insulator segmentation. IEEE Access 2019, 7, 78706–78714. [Google Scholar] [CrossRef]
- Pernebayeva, D.; Bagheri, M.; James, A. High voltage insulator surface evaluation using image processing. In Proceedings of the 2017 International Symposium on Electrical Insulating Materials(ISEIM), Toyohashi, Japan, 11–15 September 2017; pp. 520–523. [Google Scholar]
- Gong, X.; Yao, Q.; Wang, M.; Lin, Y. A Deep Learning Approach for Oriented Electrical Equipment Detection in Thermal Images. IEEE Access 2018, 6, 41590–41597. [Google Scholar] [CrossRef]
- Vasile, C.; Ioana, C. Arc fault detection & localization by electromagnetic-acoustic remote sensing. In Proceedings of the IOP Conference Series: Materials Science and Engineering, St. Gilles-les-Bains, Reunion, 10–13 October 2016; p. 012009. [Google Scholar]
- Du, G.; Xiong, J.; Zhang, R.B. Research on GIS bus fault location based on pulse voltage and ultrasonic detection. Guangdong Electr. Power 2019, 32, 115–122. [Google Scholar]
- Zhang, X.; Zhang, Y. Application of ultrasonic testing technology in insulation diagnosis of power equipment. Autom. Instrum. 2017, 12, 71. [Google Scholar]
- Boubendir, S.; Larbi, S.; Bennacer, R. Numerical study of the thermo-hydrodynamic lubrication phenomena in porous journal bearings. Tribol. Int. 2011, 44, 1–8. [Google Scholar] [CrossRef]
- Mao, K.; Li, W.; Hooke, C.J.; Walton, D. Polymer gear surface thermal wear and its performance prediction. Tribol. Int. 2010, 43, 433–439. [Google Scholar] [CrossRef]
- Guozhi, Z.; Zhang, X.; Xingrong, H.; Jia, Y.; Tang, J.; Yue, Z.; Yuan, T.; Zhenze, L. On-line monitoring of partial discharge of less-oil immersed electric equipment based on pressure and UHF. IEEE Access 2019, 7, 11178–11186. [Google Scholar] [CrossRef]
- Balan, H.; Varodi, T.; Buzdugan, M.I.; Munteanu, R.A. Monitoring power breakers using vibro acoustic techniques. In Proceeding of the 2016 International Conference on Applied and Theoretical Electricity (ICATE 2016), Craiova, Romania, 6–8 October 2016; pp. 1–6. [Google Scholar]
- Long, X.; Yang, P.; Guo, H.; Zhao, Z.; Wu, X. A CBA-KELM-based recognition method for fault diagnosis of wind turbines with time-domain analysis and multisensor data fusion. Shock Vib. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Kou, Z.; Wu, J.; Li, T. Application of mutual information-sample entropy based MED-ICEEMDAN De-noising scheme for weak fault diagnosis of hoist bearing. Entropy 2018, 20, 667. [Google Scholar] [CrossRef] [Green Version]
- Lyon, R.F. Machine hearing: An emerging field [exploratory dsp]. IEEE Signal Process. Mag. 2010, 27, 131–139. [Google Scholar] [CrossRef]
- Zaporozhets, A.; Eremenko, V.; Serhiienko, R.; Ivanov, S. Development of an intelligent system for diagnosing the technical condition of the heat power equipment. In Proceedings of the 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine, 11–14 September 2018; pp. 48–51. [Google Scholar]
- Wu, X.W.; Zhou, X.W.; Hu, S.; Peng, J.W.; Ying, L.M. Noise measurement and analysis of the main power apparatus in a 500 kV substation. Environ. Eng. 2016, 34, 1137–1140. [Google Scholar]
- Wu, X.W.; Du, X.W.; Sun, X. Fault Analysis of Construction Machinery Hydraulic System Based on Noise. J. North China Inst. Water Conserv. Hydroelectr. Power 2012, 33, 86–88. [Google Scholar]
- Mei, Y.M.; Gu, W.F.; Zhu, X.Y.; Zhu, B. Noise Analysis and Signal Processing in the Turbine Valve Closing Test. Electr. Power 2019, 52, 154–160. [Google Scholar]
- Yan, J.Z.; Zhou, J.; Ji, C.N.; Wang, D.G.; Li, S.C.; Wang, Y.; Qiao, G.L. Preliminary Study on Cracking Defect Detection of the Fan Blades based on Aerodynamic Noise. Instrum. Anal. Monit. 2018, 34, 1–6. [Google Scholar]
- Wang, G.Y.; Xing, L.L. Design and Implementation of Corona Audible Noise Signal Detecting System of High Voltage Transmission Line. Chin. J. Electron. Devices 2017, 40, 918–924. [Google Scholar]
- Hu, S.; Hao, J.B.; Luo, Z.Q.; Sun, B.; Meng, Z.H.; Wu, X.W.; Tang, Q. A Diagnosis Method for Hydraulic Generator Fault Based on Noise Frequency Band Extraction. Large Electr. Mach. Hydraul. Turbine 2017, 45, 25–29. [Google Scholar]
- Wei, W.D.; Chen, D.Z.; Hou, X.G.; Hu, S.Y.; Hu, W.M.; Zhang, D. Fault Diagnosis of Broken Rotor Bars of Asynchronous Motors Based on Stator Winding Signal Current and Noise Signal. Electr. Mach. Control Appl. 2015, 42, 69–72. [Google Scholar]
- Ma, C.L.; Xie, R.B.; Zhao, L.H.; Li, Z.P.; Xu, S.R. Characteristic analysis of transformer audible acoustic signals. Power Syst. Big Data 2018, 21, 18–26. [Google Scholar]
- Cheng, L. Fan’s Fault Diagnosis by Noise Frequency Spectrum. Nondestruct. Test. 2002, 25, 162–163. [Google Scholar]
- Rao, J.G.; Gu, G.M. Wind Turbine Blade Damage Identification Based on Harmonic Wavelet Packet and Support Vector Machine. Fiber Reinf. Plast./Compos. 2014, 41, 37–41. [Google Scholar]
- Fu, L.H.; Wang, P.; Hu, G.Z. Method to Eliminate Noise in On-Line PD Monitoring System of Transformer Based on Wavelet Analysis. Transformer 2005, 42, 44–47. [Google Scholar]
- Shen, X.B.; Wang, M.; Chen, R. The Application of Wavelet Packet Filter in GIS Partial Discharge On-line Monitoring System. Digit. Technol. Appl. 2017, 8, 81–83. [Google Scholar]
- Shu, C.; Jin, X.; Li, Z.P.; Zhouyang, J.R.; Fan, S.W. Noise Diagnosis Method of Distribution Transformer Discharge Fault Based on CEEMDAN. High Volt. Eng. 2018, 44, 2603–2611. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [Google Scholar] [CrossRef]
- Tian, S.; Bian, X.; Tang, Z.; Yang, K.; Li, L. Fault Diagnosis of Gas Pressure Regulators Based on CEEMDAN and Feature Clustering. IEEE Access 2019, 7, 132492–132502. [Google Scholar] [CrossRef]
- Gao, W.; Wai, R.J.; Qiao, S.P.; Guo, M.F. Mechanical faults diagnosis of high-voltage circuit breaker via hybrid features and integrated extreme learning machine. IEEE Access 2019, 7, 60091–60103. [Google Scholar] [CrossRef]
- Zhao, S.T.; Ma, L.; Zhu, J.P.; Li, J.P.; Zhao, H. Mechanical fault diagnosis of high voltage circuit breaker based on CEEMDAN sample entropy and FWA-SVM. Electr. Power Autom. Equip. 2020, 40, 181–186. [Google Scholar]
- Liu, X.; Song, Q.H. CEEMDAN adaptive threshold denoising algorithm in application to seismic direction. J. Chongqing Univ. 2019, 42, 95–104. [Google Scholar]
- Lu, W.; Rui, Y.; Yi, Z.; Ran, B.; Gu, Y. A Hybrid Model for Lane-Level Traffic Flow Forecasting Based on Complete Ensemble Empirical Mode Decomposition and Extreme Gradient Boosting. IEEE Access 2020, 8, 42042–42054. [Google Scholar] [CrossRef]
- Fuentealba, P.; Illanes, A.; Ortmeier, F. Cardiotocographic Signal Feature Extraction Through CEEMDAN and Time-Varying Autoregressive Spectral-Based Analysis for Fetal Welfare Assessment. IEEE Access 2019, 7, 159754–159772. [Google Scholar] [CrossRef]
- Luo, Z.Z.; Yan, Z.H.; Fu, W.D. Electroencephalogram Artifact Filtering Method of Single Channel EEG Based on CEEMDAN-ICA. Chin. J. Sens. Actuators 2018, 31, 1211–1216. [Google Scholar]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2011), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147. [Google Scholar]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using fuzzyen, apen, and sampen. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Li, Y.; Li, G.; Yang, Y.; Liang, X.; Xu, M. A fault diagnosis scheme for planetary gearboxes using adaptive multi-scale morphology filter and modified hierarchical permutation entropy. Mech. Syst. Signal Process. 2018, 105, 319–337. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Liang, H.; Yu, J. Improved permutation entropy for measuring complexity of time series under noisy condition. Complexity 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvålseth, T.O. On normalized mutual information: Measure derivations and properties. Entropy 2017, 19, 631. [Google Scholar] [CrossRef] [Green Version]
- Porta, A.; Faes, L.; Masé, M.; D’addio, G.; Pinna, G.; Maestri, R.; Montano, N.; Furlan, R.; Guzzetti, S.; Nollo, G. An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart period variability: Application to 24 h Holter recordings in healthy and heart failure humans. Chaos Interdiscip. J. Nonlinear Sci. 2007, 17, 015117. [Google Scholar] [CrossRef]
- Ji, H.; Bang, S. Feature selection for multi-class classification using pairwise class discriminatory measure and covering concept. Electron. Lett. 2000, 36, 524–525. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, M.; Deng, W.; Yang, X. A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing. Entropy 2017, 19, 14. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Guo, X.; Wang, Z.; Wang, J.; Yu, M.; Li, C.; Wang, G.; Wang, L.; Guo, H.; Zhou, J. A New Fuzzy Logic Classifier Based on Multiscale Permutation Entropy and Its Application in Bearing Fault Diagnosis. Entropy 2020, 22, 27. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Tan, H.; Li, X.; Chen, L.; Yang, D. CEEMDAN-Based Permutation Entropy: A Suitable Feature for the Fault Identification of Spiral-Bevel Gears. Shock Vib. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Yang, X.; Peng, Y.; Wang, X.; Bai, K. Multiscale Entropy Feature Extraction Method of Running Power Equipment Sound. Entropy 2020, 22, 685. https://doi.org/10.3390/e22060685
Zhai Y, Yang X, Peng Y, Wang X, Bai K. Multiscale Entropy Feature Extraction Method of Running Power Equipment Sound. Entropy. 2020; 22(6):685. https://doi.org/10.3390/e22060685
Chicago/Turabian StyleZhai, Yongjie, Xu Yang, Yani Peng, Xinying Wang, and Kang Bai. 2020. "Multiscale Entropy Feature Extraction Method of Running Power Equipment Sound" Entropy 22, no. 6: 685. https://doi.org/10.3390/e22060685
APA StyleZhai, Y., Yang, X., Peng, Y., Wang, X., & Bai, K. (2020). Multiscale Entropy Feature Extraction Method of Running Power Equipment Sound. Entropy, 22(6), 685. https://doi.org/10.3390/e22060685