Thermodynamic Analysis of a Hybrid Trigenerative Compressed Air Energy Storage System with Solar Thermal Energy
Abstract
:1. Introduction
2. System Description
3. Thermodynamic Analysis Model
- Potential and kinetic energies of all units are negligible;
- All gases in the system are treated as the ideal gas, and the Joule–Thomson effect is negligible;
- Compression in the compressor and expansion in the turbine is regarded as an isentropic process;
- In the charging or discharging process, the air storage chamber is considered as an isothermal process;
- Compressed air can be stored at constant volume, and its temperature in ASC is the same as ambient temperature;
- The pressure loss in all pipes and heat exchangers is ignored.
3.1. STS
3.2. SAC
3.3. T-CAES
3.3.1. Charging Process
3.3.2. Discharging Process
3.4. Exergy Analysis Model
3.5. Performance Criteria
4. Results and Discussion
4.1. Typical Operational Conditions
4.2. Sensitivity Analysis
4.2.1. Inlet Temperature of the Compressor
4.2.2. Inlet Temperature of the Turbine
4.2.3. Inlet Pressure of the Turbine
4.2.4. Exhaust Pressure of the Compressor
4.3. Capability Analysis of CCHP
- Thermal energy storage temperature in the hot tank is equal to supply heating and SAC;
- The temperature in the ASC is equal to the ambient temperature;
- The cooling water temperature and evaporation temperature of the SAC are constant;
- The PTC and SAC efficiency is constant;
- The inlet thermodynamic parameters of the TUR and COM stay constant;
- The minimum power supply time of the TUR is 0.5 h and at least 36% of the HTF is consumed.
5. Conclusions
- Charging and discharging times of the proposed system under design conditions are 5 h and 1.4 h, respectively. During these two modes, the system generates 498 kW h and consumes 940 kW h by the compressor and turbine. In addition, it generates 20 tons of hot water. In this situation, the ESE, RTE and exergy efficiency of the system are 53.6%, 73%, and 50.6%, respectively.
- A sensitivity analysis has indicated that the turbine inlet temperature and pressure are the critical parameters affecting the performance of the proposed HT-CAES system. When the increasing inlet temperature from 180 °C to 220 °C under design inlet air pressure, ESE, RTE, and ηex increase by 5.21%, 4.43%, and 4.38%.
- Finally, the ratio of heating and cooling VP-1 was discussed to evaluate the CHP capacity of the proposed HT-CAES. When the heating proportion of VP-1 is x = 64%, and the refrigeration proportion is Y = 0, the RTE reaches the maximum value of 85%. Therefore, the proposed hybrid T-CAES can act as essential components in smart energy grid and cities, owing to the high efficiency and ability to accommodate renewables.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
CCHP | Combined cooling heating and power |
HT-CAES | Hybrid trigenerative compressed air energy storage system |
T-CAES | Trigenerative compressed air energy storage system |
RES | Renewable energy sources |
DG | Distributed generation |
DES | Distributed energy system |
CHP | Cooling heating and power |
CAES | Compressed air energy storage |
D-CAES | Diabatic compressed air energy storage |
A-CAES | Adiabatic compressed air energy storage |
TES | Thermal energy storage |
ST-CAES | solar thermal CAES |
HA-CAES | Hybrid adiabatic compressed air energy storage |
COM | Air compressor stage unit |
TUR | Air turbine and generator unit |
HWT | Hot water tank |
LWT | Low-temperature water tank |
CWT | Cooling water tank |
CM | Chiller machine |
SAC | Solar absorption chiller |
RAC | Refrigeration air-conditioning |
AC | Air compressor train |
CHR | Compression heat radiator |
ASC | Air storage chamber |
HE | Heat exchanger |
TV | Throttle valve |
PHR | Preheat regenerator |
STS | Solar thermal collecting and storage nit |
PTC | Parabolic trough collector |
HOT | High-temperature oil tank |
LOT | Low-temperature oil tank |
HTF | Heat transfer fluid |
ESE | Electricity storage efficiency |
EXE | Exergy efficiency |
RTE | Round-trip efficiency |
OP | Oil pump |
WP | Water pump |
COP | Coefficient of performance |
VP-1 | heat of Therminol oil VP-1 |
Greek symbols | |
efficiency (%) | |
ρ | Density of fluid |
Compression ratio | |
Polytropic index | |
pressure ratio of turbine | |
τ | time (h) |
Symbols | |
Ex | exergy (kW) |
P | Power (kW) |
s | specific entropy (kJ/kg·K) |
k | polytropic index |
h | specific enthalpy (kJ/kg) |
Q | energy (kW) |
Mass flow (kg/s) | |
m | Mass (kg) |
X | Proportion of heat stored in the HOT for heating |
Y | Proportion of heat stored in the HOT for cooling |
p | Pressure (MPa) |
T | temperature (°C) |
U | heat transfer coefficient |
R | gas constant |
Subscripts | |
0 | ambient condition |
i, j | state point |
s | isentropic |
u | useful |
in | input |
out | output |
ab | absorber |
ch | charging |
dch | discharging |
c | collecting hour |
hs | heat supply |
CS | Cooling supply |
HQ | Heat quantity |
Streams | |
A | air stream |
O | oil stream |
W | water stream |
References
- Lund, H.; Salgi, G. The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Convers. Manag. 2009, 50, 1172–1179. [Google Scholar] [CrossRef]
- Madlener, R.; Latz, J. Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power. Appl. Energy 2013, 101, 299–309. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Li, G. Measuring emission-reduction and energy-conservation efficiency of Chinese cities considering management and technology heterogeneity. J. Clean. Prod. 2018, 175, 561–571. [Google Scholar] [CrossRef]
- Al Moussawi, H.; Fardoun, F.; Louahlia-Gualous, H. Review of trigeneration technologies: Design evaluation, optimization, decision-making, and selection approach. Energy Convers. Manag. 2016, 120, 157–196. [Google Scholar] [CrossRef]
- Venkataramani, G.; Parankusam, P.; Ramalingam, V.; Wang, J. A review on compressed air energy storage–a pathway for smart grid and polygeneration. Renew. Sustain. Energy Rev. 2016, 62, 895–907. [Google Scholar] [CrossRef]
- Safaei, H.; Keith, D.W.; Hugo, R.J. Compressed air energy storage (caes) with compressors distributed at heat loads to enable waste heat utilization. Appl. Energy 2013, 103, 165–179. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, T.; Mei, S.; Xue, X.-D.; Liu, B.; Lu, Q. Review and prospect of compressed air energy storage system. J. Mod. Power Syst. Clean Energy 2016, 4, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, K.; Ma, L.; Wang, J.; Dooner, M.; Miao, S.; Li, J.; Wang, D. Overview of compressed air energy storage and technology development. Energies 2017, 10, 991. [Google Scholar] [CrossRef] [Green Version]
- Jubeh, N.M.; Najjar, Y.S. Green solution for power generation by adoption of adiabatic CAES system. Appl. Therm. Eng. 2012, 44, 85–89. [Google Scholar] [CrossRef]
- Mei, S.; Wang, J.; Tian, F.; Chen, L.; Xue, X.; Lu, Q.; Zhou, Y.; Zhou, X. Design and engineering implementation of non-supplementary fired compressed air energy storage system: TICC-500. Sci. China Technol. Sci. 2015, 58, 600–611. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Yang, L.; Zhou, Y.; Wang, J. Experimental study of compressed air energy storage system with thermal energy storage. Energy 2016, 103, 182–191. [Google Scholar] [CrossRef]
- Cavallo, A. Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES). Energy 2007, 32, 120–127. [Google Scholar] [CrossRef]
- Deng, K.; Zhang, K.; Xue, X.; Zhou, H. Design of a new compressed air energy storage system with constant gas pressure and temperature for application in coal mine roadways. Energies 2019, 12, 4188. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, Q.; Liang, F.; Liu, L.; Xu, G.; Yang, Y. Performance analysis of a coal-fired external combustion compressed air energy storage system. Entropy 2014, 16, 5935–5953. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, X.; Li, D.; Ding, Y. A trigeneration system based on compressed air and thermal energy storage. Appl. Energy 2012, 99, 316–323. [Google Scholar] [CrossRef]
- Kim, Y.; Favrat, D. Energy and exergy analysis of a micro-compressed air energy storage and air cycle heating and cooling system. Energy 2010, 35, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Jannelli, E.; Minutillo, M.; Lavadera, A.L.; Falcucci, G. A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology. Energy 2014, 78, 313–322. [Google Scholar] [CrossRef]
- Facci, A.L.; Sánchez, D.; Jannelli, E.; Ubertini, S. Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment. Appl. Energy 2015, 158, 243–254. [Google Scholar] [CrossRef]
- Grazzini, G.; Milazzo, A. Thermodynamic analysis of CAES/TES systems for renewable energy plants. Renew. Energy 2008, 33, 1998–2006. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Huang, M.; Ding, S.; Ma, X. Design and simulation of Gas Turbine-Based CCHP Combined with Solar and Compressed Air Energy Storage in a hotel Building. Energy Build. 2017, 153, 412–420. [Google Scholar] [CrossRef]
- Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G.B. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity. Appl. Energy 2017, 205, 602–614. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, T.; Xue, X.; Chen, L.; Li, Q.; Mei, S. A solar–thermal-assisted adiabatic compressed air energy storage system and its efficiency analysis. Appl. Sci. 2018, 8, 1390. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Chen, H.; Liu, J.; Tan, C. Performance analysis on an integrated system of compressed air energy storage and electricity production with wind-solar complementary method. J. Proc. CESS 2012, 32, 88–95. [Google Scholar]
- Marano, V.; Rizzo, G.; Tiano, F.A. Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage. Appl. Energy 2012, 97, 849–859. [Google Scholar] [CrossRef]
- Yan, Y.; Shang, Y.; Li, K.; Wang, Z. An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage. Appl. Energy 2018, 210, 1151–1166. [Google Scholar] [CrossRef]
- Rahmanifard, H.; Plaksina, T. Hybrid compressed air energy storage, wind and geothermal energy systems in Alberta: Feasibility simulation and economic assessment. Renew. Energy 2019, 143, 453–470. [Google Scholar] [CrossRef]
- Houssainy, S.; Janbozorgi, M.; Kavehpour, P. Performance of an isobaric hybrid compressed air energy storage system at minimum entropy generation. J. Energy Resour. Technol. 2020, 142, 1–20. [Google Scholar] [CrossRef]
- Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; An, B.; Wang, J. Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system. Energy Convers. Manag. 2017, 142, 176–187. [Google Scholar] [CrossRef]
- Amin, M.; Mehdi, M. Exergy analysis and optimization of an integrated micro gas turbine, compressed air energy storage and solar dish collector process. J. Clean. Prod. 2016, 139, 372–383. [Google Scholar]
- Semprini, S.; Sánchez, D.; Pascale, A.D. Performance analysis of a micro gas turbine and solar dish integrated system under different solar-only and hybrid operating conditions. Sol. Energy 2016, 132, 279–293. [Google Scholar] [CrossRef]
- Yang, G.; Zhai, X. Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies. Appl. Therm. Eng. 2018, 133, 327–340. [Google Scholar] [CrossRef]
- Li, R.; Chen, L.; Yuan, T.; Li, C. Optimal dispatch of zero-carbon emission micro energy internet integrated with non-supplementary fired compressed air energy storage system. J. Mod. Power Syst. Clean Energy 2016, 4, 566–580. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Li, R.; Xue, X.; Chen, Y.; Lu, Q.; Chen, X.; Ahrens, C.; Li, R.; Chen, L. Paving the way to smart micro energy internet: Concepts, design principles, and engineering practices. CSEE J. Power Energy Syst. 2017, 3, 440–449. [Google Scholar] [CrossRef]
- Fuqiang, W.; Ziming, C.; Jianyu, T.; Yuan, Y.; Yong, S.; Linhua, L. Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 79, 1314–1328. [Google Scholar] [CrossRef]
- Solutia Technical Bulletin 7239115C. Available online: https://www.therminol.com/products/Therminol-VP1 (accessed on 4 May 2016).
- Guo, H.; Xu, Y.; Zhang, X.; Zhou, X.; Chen, H. Transmission characteristics of exergy for novel compressed air energy storage systems-from compression and expansion sections to the whole system. Energy 2019, 193, 116798. [Google Scholar] [CrossRef]
- Huang, D. Analysis on Exergy in the Photo-thermal Conversion Process of Trough Type Solar Collector. Hydropower New Energy 2014. Available online: https://www.semanticscholar.org/paper/Analysis-on-Exergy-in-the-Photo-thermal-Conversion-Dingyi/bd3f068c163a3343a912b74adfd465a3130fe17e (accessed on 29 May 2020).
- Farzad, J.; Emad, A.; Hossein, A. Energy and exergy efficiency of heat pipe evacuated tube solar collectors. Therm. Sci. 2016, 20, 150. [Google Scholar]
- Hachicha, A.A.; Rodríguez, I.; Capdevila, R.; Oliva, A. Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Appl. Energy 2013, 111, 581–592. [Google Scholar] [CrossRef] [Green Version]
Subsystem | Exin | Exout |
---|---|---|
AC | WCOM + ExA3 + ExA5 + ExA7 | ExA2 + ExA4 + ExA6 + ExA8 |
HE of COM | ExA2 + ExA4 + ExA6 + ExA8 + ExW1 + ExW3 + ExW5 + ExW7 | ExA3 + ExA5 + ExA7 + ExA9 + ExW2 + ExW4 + ExW6 + ExW8 |
STS | ExQu | ExO3ExO2 |
AT | ExA12 + ExA14 + ExA16 | WTUR + ExA13 + ExA15 + ExA17 |
HE of TUR | ExA10 + ExA17 + ExA11 + ExA13 + ExA15 + ExO5 | ExA11 + ExA18 + ExA12 + ExA14 + ExA16 + ExO12 |
Absorption Chiller | ExO13 + ExW11 | ExO14 + ExW12 |
ASC | ExA9 | ExA10 |
Parameters | Units | Values | Parameters | Units | Values |
---|---|---|---|---|---|
COM | TUR | ||||
Ambient pressure | MPa | 0.1 | Inlet pressure of air turbine | MPa | 3 |
Ambient temperature | °C | 20 | Inlet temperature of air turbine | °C | 200 |
Compression stage (i) | / | 4 | Expansion stage (j) | / | 3 |
Isentropic efficiency of compressor | % | 90 | Isentropic efficiency of turbine | % | 85 |
Compression ratio | / | 3 | Expansion ratio | / | 2.65 |
τch | h | 5 | τdch | h | 1.4 |
Mass flow rate of compressor | kg/s | 0.33 | Mass flow rate of turbine | kg/s | 1.17 |
Temperature of recovery water | °C | 30 | Range of pressure with ASC | MPa | 3~8 |
Volume of air store chamber | m3 | 100 | Efficiency of generator | % | 94.8 |
Temperature of hot water tank | °C | 60 | SAC | ||
/ | / | / | Cooling water supplying duration | h | 5 |
Temperature of low water tank | °C | 20 | COP of absorption chiller | / | 0.67 |
Hot water supplying duration | h | 8 | Mass flow rate of cooling water | kg/s | 0.63 |
STS | |||||
Direct normal irradiance | W/m2 | 841.1 | Range of temperature with hot oil tank | °C | 250~252 |
Mass flow rate of VP-1 (charging process) | kg/s | 0.336 | Solar thermal storage duration | h | 6 |
Efficiency of heat collection | % | 63.8 | Mass flow rate of VP-1 (discharging process) | kg/s | 1.44 |
Reflectivity of collector mirrors | % | 94 | Collector area | m2 | 405.8 |
Parameters | Unit | Values |
---|---|---|
Compressor power consumption | kW | 190 |
Air turbine electricity generation | kW | 352 |
Collection power of PTC | kW | 100.6 |
Production the mass of cooling water | ton | 15 |
Production the mass of hot water | ton | 20 |
Electricity storage efficiency | % | 53.6 |
Round-trip efficiency | % | 73 |
Exergy efficiency | % | 50.6 |
Stream | T (°C) | P (MPa) | h (kJ/kg) | s (kJ/kg·K) | Ex (kJ/kg) | m (kg/s) |
---|---|---|---|---|---|---|
A1 | 20 | 0.101 | 419.41 | 3.8644 | 0 | 0.33 |
A2 | 143.7 | 0.309 | 544.15 | 3.8983 | 114.81 | 0.33 |
A3 | 45 | 0.303 | 444.17 | 3.6302 | 93.403 | 0.33 |
A4 | 178.8 | 0.924 | 579.49 | 3.6648 | 218.6 | 0.33 |
A5 | 45 | 0.906 | 442.98 | 3.3124 | 185.4 | 0.33 |
A6 | 177.3 | 2.729 | 576.64 | 3.3461 | 309.18 | 0.33 |
A7 | 45 | 2.675 | 439.58 | 2.9916 | 276.05 | 0.33 |
A8 | 179.6 | 8.16 | 575.76 | 3.0246 | 402.53 | 0.33 |
A9 | 45 | 8 | 430.23 | 2.6485 | 367.26 | 0.33 |
A10 | 19.9 | 2.903 | 412.82 | 2.8806 | 281.82 | 1.17 |
A11 | 65 | 2.903 | 460.02 | 3.0304 | 285.1 | 1.17 |
A12 | 200 | 2.846 | 600.13 | 3.3848 | 321.32 | 1.17 |
A13 | 90 | 0.949 | 488.73 | 3.4336 | 195.62 | 1.17 |
A14 | 200 | 0.93 | 601.28 | 3.71 | 227.12 | 1.17 |
A15 | 90.2 | 0.31 | 489.85 | 3.758 | 101.65 | 1.17 |
A16 | 200 | 0.304 | 601.68 | 4.0324 | 133.02 | 1.17 |
A17 | 90.3 | 0.101 | 490.26 | 4.081 | 7.3474 | 1.17 |
A18 | 34.5 | 0.1 | 308.59 | 6.89 | 0.35 | 1.17 |
Stream | T (°C) | P (Mpa) | h (kJ/kg) | s (kJ/kg·K) | Ex (kJ/kg) | m (kg/s) |
---|---|---|---|---|---|---|
O1 | 100 | 0.101 | 579.85 | −7.2 | 10.21 | 0.34 |
O2 | 100.3 | 0.436 | 580.29 | −2.77 | 14.90 | 0.34 |
O3 | 251 | 0.101 | 879.18 | −1.48 | 273.06 | 0.34 |
O4 | 250 | 0.1014 | 877 | −2.03 | 144.64 | 1.44 |
O5 | 250 | 0.103 | 877 | −1.50 | 268.91 | 1.44 |
O6 | 250 | 0.103 | 877 | −1.50 | 268.91 | 0.55 |
O7 | 100 | 0.101 | 579.85 | −2.76 | 10.54 | 0.55 |
O8 | 250 | 0.103 | 877 | −1.50 | 268.91 | 0.45 |
O9 | 100 | 0.101 | 579.85 | −2.65 | 21.99 | 0.45 |
O10 | 250 | 0.103 | 877 | −1.50 | 268.91 | 0.44 |
O11 | 100 | 0.101 | 579.85 | −2.64 | 22.22 | 0.44 |
O12 | 100 | 0.101 | 579.85 | −2.69 | 17.87 | 1.44 |
O13 | 250 | 0.12 | 375.20 | −1.02 | 144.64 | 0.9 |
O14 | 150 | 0.101 | 14.30 | −2.06 | 14.90 | 0.9 |
W1 | 20 | 0.103 | 84.01 | 0.30 | 0.00 | 0.2 |
W2 | 60 | 0.101 | 251.25 | 0.83 | 10.47 | 0.2 |
W3 | 20 | 0.103 | 84.01 | 0.30 | 0.00 | 0.27 |
W4 | 60 | 0.101 | 251.25 | 0.83 | 10.47 | 0.27 |
W5 | 20 | 0.103 | 84.01 | 0.30 | 0.00 | 0.27 |
W6 | 60 | 0.101 | 251.25 | 0.83 | 10.47 | 0.27 |
W7 | 20 | 0.103 | 84.01 | 0.30 | 0.00 | 0.28 |
W8 | 60 | 0.101 | 251.25 | 0.83 | 10.47 | 0.28 |
W9 | 60 | 0.403 | 251.50 | 0.83 | 10.77 | 1.02 |
W10 | 20 | 0.403 | 84.29 | 0.30 | 0.30 | 1.02 |
W11 | 60 | 0.130 | 251.27 | 0.83 | 10.50 | 0.63 |
W12 | 30 | 0.101 | 125.82 | 0.44 | 0.70 | 0.63 |
W13 | 4 | 0.2 | 17.01 | 0.061 | 2.0 | 0.4 |
W14 | 19.6 | 0.2 | 82.43 | 0.29 | 0.098 | 0.4 |
Parameters | Unit | HT-CAES | Hybrid A-CAES |
---|---|---|---|
Compressor power consumption | kWh | 925 | 152.1 |
Charging time | h | 5 | 6.59 |
Discharging time | h | 1.4 | 5.13 |
With/without TES | / | Yes | no |
Expansion train working period | load peak hours | Irradiation peak hours | |
Inlet temperature of air turbine | °C | 200 | 900 |
Air turbine electricity generation | kWh | 385.2 | 228.54 |
Round trip efficiency | % | 73 | 76.5 |
Exergy efficiency | % | 50.6 | 53.4 |
Heating Ratio X% | VP-1 Mass for Generating Power T | Regenerated Hot Water T | The Range Pressure in ASC MPa | h | h |
---|---|---|---|---|---|
0 | 7.2576 | 18.3 | 8.0~3.0 | 5.0 | 1.4 |
14 | 6.24154 | 15.4 | 8.0~3.7 | 4.2 | 1.2 |
24 | 5.51578 | 13.5 | 8.0~4.2 | 3.7 | 1.0 |
34 | 4.79002 | 11.7 | 8.0~4.7 | 3.2 | 0.9 |
44 | 4.06426 | 10.2 | 8.0~5.2 | 2.7 | 0.7 |
54 | 3.3385 | 8.4 | 8.0~5.7 | 2.2 | 0.6 |
64 | 2.61274 | 6.6 | 8.0~6.2 | 1.7 | 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xue, X.; Si, Y.; Liu, C.; Chen, L.; Guo, Y.; Mei, S. Thermodynamic Analysis of a Hybrid Trigenerative Compressed Air Energy Storage System with Solar Thermal Energy. Entropy 2020, 22, 764. https://doi.org/10.3390/e22070764
Chen X, Xue X, Si Y, Liu C, Chen L, Guo Y, Mei S. Thermodynamic Analysis of a Hybrid Trigenerative Compressed Air Energy Storage System with Solar Thermal Energy. Entropy. 2020; 22(7):764. https://doi.org/10.3390/e22070764
Chicago/Turabian StyleChen, Xiaotao, Xiaodai Xue, Yang Si, Chengkui Liu, Laijun Chen, Yongqing Guo, and Shengwei Mei. 2020. "Thermodynamic Analysis of a Hybrid Trigenerative Compressed Air Energy Storage System with Solar Thermal Energy" Entropy 22, no. 7: 764. https://doi.org/10.3390/e22070764
APA StyleChen, X., Xue, X., Si, Y., Liu, C., Chen, L., Guo, Y., & Mei, S. (2020). Thermodynamic Analysis of a Hybrid Trigenerative Compressed Air Energy Storage System with Solar Thermal Energy. Entropy, 22(7), 764. https://doi.org/10.3390/e22070764