Driver Countries in Global Banking Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Principal Component Analysis
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cerutti, E.; Hale, G.; Minoiu, C. Financial crises and the composition of cross-border lending. J. Int. Money Financ. 2015, 52, 60–81. [Google Scholar] [CrossRef] [Green Version]
- Hale, G.; Kapan, T.; Minoiu, C. Crisis Transmission through the Global Banking Network; Federal Reserve Bank of San Francisco: San Francisco, CA, USA, 2016. [Google Scholar]
- Hu, X.; Zhao, H.; Zheng, S.; Wang, L. CBOL: Cross-Bank Over-Loan Prevention, Revisited. Entropy 2020, 22, 619. [Google Scholar] [CrossRef]
- Yue, P.; Fan, Y.; Batten, J.; Zhou, W. Information transfer between stock market sectors: A comparison between the USA and China. Entropy 2020, 22, 194. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Ratnovski, L. The dark side of bank wholesale funding. J. Financ. Intermed. 2011, 20, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Hale, G.; Kapan, T.; Minoiu, C. Shock transmission through cross-border bank lending: Credit and real effects. Rev. Financ. Stud. 2019. [Google Scholar] [CrossRef]
- DasGupta, B.; Kaligounder, L. On global stability of financial networks. J. Complex Netw. 2014, 2, 313–354. [Google Scholar] [CrossRef] [Green Version]
- Berardi, S.; Tedeschi, G. From banks’ strategies to financial (in) stability. Int. Rev. Econ. Financ. 2017, 47, 255–272. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.S.; Scuzzarella, M.R.; Cihák, M.M. The Bright and the Dark Side of Cross-Border Banking Linkages; Number 11-186; International Monetary Fund: Washington, DC, USA, 2011. [Google Scholar]
- Minoiu, C.; Kang, C.; Subrahmanian, V.; Berea, A. Does financial connectedness predict crises? Quant. Financ. 2015, 15, 607–624. [Google Scholar] [CrossRef]
- Nier, E.; Yang, J.; Yorulmazer, T.; Alentorn, A. Network models and financial stability. J. Econ. Dynam. Control 2007, 31, 2033–2060. [Google Scholar] [CrossRef]
- Poledna, S.; Hinteregger, A.; Thurner, S. Identifying systemically important companies by using the credit network of an entire nation. Entropy 2018, 20, 792. [Google Scholar] [CrossRef] [Green Version]
- Poledna, S.; Hinteregger, A.; Thurner, S. Measuring Global Financial Linkages: A Network Entropy Approach. Sustainability 2019, 11, 4691. [Google Scholar]
- Akhtar, Y.; Kayani, G.; Yousaf, T. The Effects of Regulatory Capital Requirements and Ownership Structure on Bank Lending in Emerging Asian Markets. J. Risk Financ. Manag. 2019, 12, 142. [Google Scholar] [CrossRef] [Green Version]
- Hattori, M.; Suda, Y. Developments in a cross-border bank exposure network. In Proceedings of the CGFS Workshop Held at the Bank for International Settlements, Switzerland, 18–19 June 2007. [Google Scholar]
- Minoiu, C.; Reyes, J.A. A Network Analysis of Global Banking: 1978–2009; International Monetary Fund: Washington, DC, USA, 2011; pp. 1–41. [Google Scholar]
- Minoiu, C.; Reyes, J.A. A network analysis of global banking: 1978–2010. J. Financ. Stab. 2013, 9, 168–184. [Google Scholar] [CrossRef]
- Peltonen, T.A.; Rancan, M.; Sarlin, P. Interconnectedness of the banking sector as a vulnerability to crises. Int. J. Finance Econ. 2019, 24, 963–990. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, C.A.; Mani, C.K. The Selection of winning stocks using principal component analysis. Am. J. Market. Res. 2015, 1, 183–188. [Google Scholar]
- Rahayu, S.; Sugiarto, T.; Madu, L.; Holiawati; Subagyo, A. Application of Principal Component Analysis (PCA) to Reduce Multicollinearity Exchange Rate Currency of Some Countries in Asia Period 2004–2014. Int. J. Educ. Method. 2017, 3, 75–83. [Google Scholar]
- Li, Y.; Zhang, Q. The application of principal component analysis on financial analysis in real estate listed company. Procedia Eng. 2011, 15, 4499–4503. [Google Scholar] [CrossRef] [Green Version]
- Yang, L. An Application of Principal Component Analysis to Stock Portfolio Management; University of Canterbury: Christchurch, New Zealand, 2015. [Google Scholar]
- Pasini, G. Principal Component Analysis for stock portfolio management. Int. J. Pure Appl. Math. 2017, 115, 153–167. [Google Scholar] [CrossRef]
- Avdjiev, S.; Hale, G. US monetary policy and fluctuations of international bank lending. J. Int. Money Finance 2019, 95, 251–268. [Google Scholar] [CrossRef]
- Filardo, A.J.; Siklos, P.L. The cross-border credit channel and lending standards surveys. SSRN 2018, 723, 1–49. [Google Scholar]
- Saeedian, M.; Jamali, T.; Kamali, M.; Bayani, H.; Yasseri, T.; Jafari, G. Emergence of world-stock-market network. Phys. A Stat. Mech. Its Applic. 2019, 526, 120792. [Google Scholar] [CrossRef] [Green Version]
- International Banking Statistics. 1977–2018. Available online: https://www.bis.org/statistics/bankstats.htm (accessed on 1 July 2020).
- Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philosoph. Magaz. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Jackson, J.E. A User’s Guide to Principal Components; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 587. [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philosoph. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Saporta, G.; Niang, N. Principal component analysis: Application to statistical process control. Data Anal. 2009, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Belasco, E.; Philips, B.U.; Gong, G.; Sanguansat, P. The Health Care Access Index as a determinant of delayed cancer detection through principal component analysis. In Principal Component Analysis-Multidisciplinary Applications; Intech: London, UK, 2012. [Google Scholar]
- Furman-Haran, E.; Feinberg, M.S.; Badikhi, D.; Eyal, E.; Zehavi, T.; Degani, H. Standardization of radiological evaluation of dynamic contrast enhanced MRI: Application in breast cancer diagnosis. Technol. Cancer Res. Treat. 2014, 13, 445–454. [Google Scholar] [CrossRef]
- Giuliani, A.; Benigni, R. Principal Component Analysis for Descriptive Epidemiology. In Proceedings of the International Symposium on Medical Data Analysis, Frankfurt am Main, Germany, 29–30 September 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 308–313. [Google Scholar]
- Martis, R.J.; Acharya, U.R.; Min, L.C. ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomed. Signal Process. Control 2013, 8, 437–448. [Google Scholar] [CrossRef]
- Agarwal, S.; Jacobs, D.R.; Vaidya, D.; Sibley, C.T.; Jorgensen, N.W.; Rotter, J.I.; Chen, Y.D.I.; Liu, Y.; Andrews, J.S.; Kritchevsky, S.; et al. Metabolic syndrome derived from principal component analysis and incident cardiovascular events: The multi ethnic study of atherosclerosis (MESA) and health, aging, and body composition (Health ABC). Cardiol. Res. Pract. 2012, 2012. [Google Scholar] [CrossRef]
- Klyuzhin, I.S.; Fu, J.F.; Hong, A.; Sacheli, M.; Shenkov, N.; Matarazzo, M.; Rahmim, A.; Stoessl, A.J.; Sossi, V. Data-driven, voxel-based analysis of brain PET images: Application of PCA and LASSO methods to visualize and quantify patterns of neurodegeneration. PLoS ONE 2018, 13, e0206607. [Google Scholar] [CrossRef] [Green Version]
- Kolasa-Więcek, A. Application of PCA in the analysis of parameters related to agricultural greenhouse gases emissions in Europe. J. Res. Applic. Agric. Eng. 2012, 57, 77–79. [Google Scholar]
- Ahmadfaraj, M.; Mirmohammadi, M.; Afzal, P. Application of fractal modeling and PCA method for hydrothermal alteration mapping in the Saveh area (Central Iran) based on ASTER multispectral data. Int. J. Min. Geo Eng. 2016, 50, 37–48. [Google Scholar]
- Raskin, R.; Terry, H. A principal-components analysis of the Narcissistic Personality Inventory and further evidence of its construct validity. J. Personal. Soc. Psychol. 1988, 54, 890. [Google Scholar] [CrossRef]
- Pandey, P.K.; Singh, Y.; Tripathi, S. Image processing using principle component analysis. Int. J. Comp. Applic. 2011, 15, 37–40. [Google Scholar]
- Hernandez, W.; Mendez, A. Application of Principle Component Analysis to Image Compression. Stat. Grow. Data Sets Grow. Demand Stat. 2018, 107–137. [Google Scholar] [CrossRef] [Green Version]
- Hedayatifar, L.; Rigg, R.A.; Bar-Yam, Y.; Morales, A.J. US social fragmentation at multiple scales. J. R. Soc. Interface 2019, 16, 20190509. [Google Scholar] [CrossRef]
- Poon, B.; Amin, M.A.; Yan, H. PCA based face recognition and testing criteria. In Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, Hebei, China, 12–15 July 2009; Volume 5, pp. 2945–2949. [Google Scholar]
- Hladnik, A. Image compression and face recognition: Two image processing applications of principal component analysis. Int. Circ. Graph. Educ. Res. 2013, 6, 56–61. [Google Scholar]
- Battiston, S.; Gatti, D.D.; Gallegati, M.; Greenwald, B.; Stiglitz, J.E. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. J. Economic Dyn. Control 2012, 36, 1121–1141. [Google Scholar] [CrossRef] [Green Version]
- Georg, C.P. The effect of the interbank network structure on contagion and common shocks. J. Bank. Financ. 2013, 37, 2216–2228. [Google Scholar] [CrossRef] [Green Version]
- Fujii, M.; Takaoka, M. Structure of the financial system and the contagion effect: A network approach. Public Policy Rev. 2011, 7, 27–50. [Google Scholar]
- Allen, F.; Gale, D. Financial contagion. J. Polit. Econ. 2000, 108, 1–33. [Google Scholar] [CrossRef]
- Gai, P.; Kapadia, S. Contagion in financial networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 2010, 466, 2401–2423. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Jaramillo, S.; Pérez, O.P.; Embriz, F.A.; Dey, F.L.G. Systemic risk, financial contagion and financial fragility. J. Econ. Dyn. Control 2010, 34, 2358–2374. [Google Scholar] [CrossRef]
- Sole, M.J.; Espinosa-Vega, M.A. Cross-Border Financial Surveillance: A Network Perspective; Number 10-105; International Monetary Fund: Washington, DC, USA, 2010. [Google Scholar]
- Tamura, M.; Tsujita, S. A study on the number of principal components and sensitivity of fault detection using PCA. Comp. Chem. Eng. 2007, 31, 1035–1046. [Google Scholar] [CrossRef]
Abbreviation | Country Name | Abbreviation | Country Name |
---|---|---|---|
AU | Australia | IT | Italy |
AT | Austria | JP | Japan |
BE | Belgium | JE | Jersey |
BR | Brazil | LU | Luxembourg |
CA | Canada | MO | Macao SAR |
CL | Chile | MX | Mexico |
ROC | Chinese Taipei | NL | Netherlands |
DK | Denmark | PH | Philippines |
FL | Finland | ZA | South Africa |
FR | France | KR | South Korea |
DE | Germany | ES | Spain |
GR | Greece | SE | Sweden |
GG | Guernsey | CH | Switzerland |
HK | Hong Kong SAR | GB | United Kingdom |
IE | Ireland | US | United States |
IM | Ise of Man |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atyabi, F.; Buchel, O.; Hedayatifar, L. Driver Countries in Global Banking Network. Entropy 2020, 22, 810. https://doi.org/10.3390/e22080810
Atyabi F, Buchel O, Hedayatifar L. Driver Countries in Global Banking Network. Entropy. 2020; 22(8):810. https://doi.org/10.3390/e22080810
Chicago/Turabian StyleAtyabi, Farzaneh, Olha Buchel, and Leila Hedayatifar. 2020. "Driver Countries in Global Banking Network" Entropy 22, no. 8: 810. https://doi.org/10.3390/e22080810
APA StyleAtyabi, F., Buchel, O., & Hedayatifar, L. (2020). Driver Countries in Global Banking Network. Entropy, 22(8), 810. https://doi.org/10.3390/e22080810