Some Notes on Quantum Information in Spacetime
Funding
Conflicts of Interest
References
- Alsing, P.M.; Fuentes, I. Observer dependent entanglement, Class. Quantum Grav. 2012, 29, 224001. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.C.W. Particles do not exist. In Quantum Theory of Gravity; Essays in Honor of the 60th Birthday of Bryce DeWitt; Christensen, S.M., Ed.; Adam Hilger: Bristol, UK, 1984; pp. 66–77. [Google Scholar]
- Colosi, D.; Rovelli, C. What is a particle? Class. Quant. Grav. 2009, 26, 025002. [Google Scholar] [CrossRef] [Green Version]
- Zeilinger, A. Dance of the Photons: From Einstein to Quantum Teleportation; Farrar Straus Giroux Publisher: New York, NY, USA, 2010. [Google Scholar]
- Jaroszkiewicz, G. Observers and Reality, in Beyond Peaceful Coexistence. In The Emergence of Space, Time and Quantum; Licata, I., Ed.; Imperial College Press: London, UK, 2016; pp. 137–151. [Google Scholar]
- Licata, I.; Corda, C.; Benedetto, E. A machian request for the equivalence principle in extended gravity and non-geodesic motion. Grav. Cosmol. 2016, 22, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Licata, I.; Benedetto, E. The Charge in a Lift. A Covariance Problem. Gravit. Cosmol. 2018, 24, 173–177. [Google Scholar] [CrossRef]
- Candelas, P.; Sciama, D.W. Is there a quantum equivalence principle? Phys. Rev. D 1983, 27, 1715. [Google Scholar] [CrossRef]
- Tamburini, F.; de Laurentis, M.F.; Licata, I. Radiation from charged particles due to explicit symmetry breaking in a gravitational field. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850122. [Google Scholar] [CrossRef] [Green Version]
- Zych, M.; Brukner, C. Quantum formulation of the Einstein equivalence principle. Nat. Phys. 2018, 14, 1027–1031. [Google Scholar] [CrossRef]
- Hardy, L. Implementation of the Quantum Equivalence Principle. arXiv 2019, arXiv:1903.01289. [Google Scholar]
- Hooft, G. Dimensional Reduction in Quantum Gravity. arXiv 1993, arXiv:gr-qc/9310026. [Google Scholar]
- Susskind, L. The paradox of quantum black holes. Nat. Phys. 2006, 2, 665–677. [Google Scholar] [CrossRef]
- Susskind, L. String Physics and Black Holes. Nucl. Phys. Proc. Suppl. 1995, 45, 115–134. [Google Scholar] [CrossRef] [Green Version]
- Strominger, A.; Vafa, C. Microscopic Origin of the Bekenstein-Hawking Entropy. Phys. Lett. 1996, 379, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Yogendran, K.P. Horizon strings and interior states of a black hole. Phys. Lett. 2015, 750, 278–281. [Google Scholar] [CrossRef] [Green Version]
- Nicolini, P. Noncommutative Black Holes. The Final Appeal to Quantum Gravity: A Review. Int. J. Mod. Phys. 2009, 24, 1229–1308. [Google Scholar] [CrossRef]
- Dowker, F.; Gregory, R.; Traschen, J. Euclidean Black Hole Vortices. Phys. Rev. 1992, 45, 2762–2771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirayama, T.; Holdom, B. Can black holes have Euclidean cores? Phys. Rev. 2003, 68, 044003. [Google Scholar] [CrossRef] [Green Version]
- Corda, C. Black hole quantum spectrum. Eur. Phys. J. 2013, 73, 2665. [Google Scholar] [CrossRef]
- Bekenstein, J.; Schiffer, M. Quantum Limitations on the Storage and Transmission of Information. Int. J. Mod. Phys. 1990, 1, 355–422. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. The Holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L. The world as an hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.M. The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Witten, E. Anti De Sitter Space and Holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef]
- Dong, X.; Silverstein, E.; Torroba, G. De Sitter holography and entanglement entropy. J. High Energy Phys. 2018, 2018, 50. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, H. Resolving the black-hole information paradox by treating time on an equal footing with space. Phys. Lett. B 2009, 678, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Feleppa, F.; Licata, I.; Corda, C. Hartle-Hawking boundary conditions as Nucleation by de Sitter Vacuum. Phys. Dark Universe 2019, 26, 100381. [Google Scholar] [CrossRef] [Green Version]
- Licata, I.; Fiscaletti, D.; Chiatti, L.; Tamburini, F.; Davide, F. CPT symmetry in cosmology and the Archaic Universe. Phys. Scr. 2020, 95, 075004. [Google Scholar] [CrossRef]
- Licata, I.; Chiatti, L. Event-Based Quantum Mechanics: A Context for the Emergence of Classical Information. Symmetry 2019, 11, 181. [Google Scholar] [CrossRef] [Green Version]
- Vistarini, T. Holographic space and time: Emergent in what sense? Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 2017, 59, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Crowther, K. As below, so before: ‘synchronic’ and ‘diachronic’ conceptions of spacetime emergence. Synthese 2020, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Licata, I. In and Out of the Screen. On some new considerations about localization and delocalization in Archaic Theory, in Beyond Peaceful Coexistence. In The Emergence of Space, Time and Quantum; Imperial College Press: London, UK, 2016; pp. 559–577. [Google Scholar]
- Kim, H. Classical and quantum wormholes in Einstein-Yang-Mills theory. Nucl. Phys. B 1998, 527, 342–359. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortsch. Phys. 2013, 61, 781–811. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L. Copenhagen vs Everett, Teleportation, and ER = EPR. Fortschr. Phys. 2016, 64, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Carroll, S.; Michalakis, S. Space from Hilbert Space: Recovering Geometry from Bulk Entanglement. Phys. Rev. 2017, 95, 024031. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, F.; Licata, I. General Relativistic Wormhole Connections from Planck-Scales and the ER = EPR Conjecture. Entropy 2019, 22, 3. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Mazumdar, A.; Morley, G.W.; Ulbricht, H.; Toroš, M.; Paternostro, M.; Geraci, A.A.; Barker, P.F.; Kim, M.S.; Milburn, G. Spin Entanglement Witness for Quantum Gravity. Phys. Rev. Lett. 2017, 119, 240401. [Google Scholar] [CrossRef] [Green Version]
- Marletto, C.; Vedral, V. Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity. Phys. Rev. Lett. 2017, 119, 240402. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, M.; Rovelli, C. On the possibility of laboratory evidence for quantum superposition of geometries. Phys. Lett. B 2019, 792, 64–68. [Google Scholar] [CrossRef]
- Giacomini, F.; Castro-Ruiz, E.; Brukner, C. Quantum mechanics and the covariance of physical laws in quantum reference frames. Nat. Commun. 2019, 10, 494. [Google Scholar] [CrossRef]
- Chiatti, L.; Licata, I. Particle model from quantum foundations. Quantum Stud. Math. Found. 2016, 4, 181–204. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licata, I. Some Notes on Quantum Information in Spacetime. Entropy 2020, 22, 864. https://doi.org/10.3390/e22080864
Licata I. Some Notes on Quantum Information in Spacetime. Entropy. 2020; 22(8):864. https://doi.org/10.3390/e22080864
Chicago/Turabian StyleLicata, Ignazio. 2020. "Some Notes on Quantum Information in Spacetime" Entropy 22, no. 8: 864. https://doi.org/10.3390/e22080864