Quantum Transport in Mesoscopic Systems
Funding
Acknowledgments
Conflicts of Interest
References
- Büttiker, M. Four-terminal Phase-Coherent Conductance. Phys. Rev. Lett. 1986, 57, 1761. [Google Scholar] [CrossRef]
- Imry, Y. Introduction to Mesoscopic Physics; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Nazarov, Y.V.; Blanter, Y.M. Quantum Transport: Introduction to Nanoscience; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Ihn, T. Semiconductor Nanostructures: Quantum States and Electronic Transport; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Filippone, M.; Marguerite, A.; Le Hur, K.; Fève, G.; Mora, C. Phase-Coherent Dynamics of Quantum Devices with Local Interactions. Entropy 2020, 22, 847. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, R. Quantum Pumping with Adiabatically Modulated Barriers in Three-Band Pseudospin-1 Dirac–Weyl Systems. Entropy 2019, 21, 209. [Google Scholar] [CrossRef] [Green Version]
- Tokura, Y. Quantum Adiabatic Pumping in Rashba-Dresselhaus-Aharonov-Bohm Interferometer. Entropy 2019, 21, 828. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Uchiyama, C. Nonadiabaticity in Quantum Pumping Phenomena under Relaxation. Entropy 2019, 21, 842. [Google Scholar] [CrossRef] [Green Version]
- Moldoveanu, V.; Manolescu, A.; Gudmundsson, V. Generalized Master Equation Approach to Time-Dependent Many-Body Transport. Entropy 2019, 21, 731. [Google Scholar] [CrossRef] [Green Version]
- Pandey, D.; Colomés, E.; Albareda, G.; Oriols, X. Stochastic Schrödinger Equations and Conditional States: A General Non-Markovian Quantum Electron Transport Simulator for THz Electronics. Entropy 2019, 21, 1148. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.H.; van Steensel, A.; Nazarov, Y.V. Entropy Production in Quantum is Different. Entropy 2019, 21, 854. [Google Scholar] [CrossRef] [Green Version]
- Kheradsoud, S.; Dashti, N.; Misiorny, M.; Potts, P.P.; Splettstoesser, J.; Samuelsson, P. Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine. Entropy 2019, 21, 777. [Google Scholar] [CrossRef] [Green Version]
- Bustos-Marún, R.A.; Calvo, H.L. Thermodynamics and Steady State of Quantum Motors and Pumps Far from Equilibrium. Entropy 2019, 21, 824. [Google Scholar] [CrossRef] [Green Version]
- Maisel, L.; López, R. Effective Equilibrium in Out-of-Equilibrium Interacting Coupled Nanoconductors. Entropy 2020, 22, 8. [Google Scholar] [CrossRef] [Green Version]
- Biele, R.; D’Agosta, R. Beyond the State of the Art: Novel Approaches for Thermal and Electrical Transport in Nanoscale Devices. Entropy 2019, 21, 752. [Google Scholar] [CrossRef] [Green Version]
- Medrano Sandonas, L.; Gutierrez, R.; Pecchia, A.; Croy, A.; Cuniberti, G. Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green’s Function Techniques. Entropy 2019, 21, 735. [Google Scholar] [CrossRef] [Green Version]
- Perroni, C.A.; Cataudella, V. On the Role of Local Many-Body Interactions on the Thermoelectric Properties of Fullerene Junctions. Entropy 2019, 21, 754. [Google Scholar] [CrossRef] [Green Version]
- Tettamanzi, G.C. Unusual Quantum Transport Mechanisms in Silicon Nano-Devices. Entropy 2019, 21, 676. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Dong, B.; Lei, X.-L. Enhanced Negative Nonlocal Conductance in an Interacting Quantum Dot Connected to Two Ferromagnetic Leads and One Superconducting Lead. Entropy 2019, 21, 1003. [Google Scholar] [CrossRef] [Green Version]
- Bułka, B.R.; Łuczak, J. Current Correlations in a Quantum Dot Ring: A Role of Quantum Interference. Entropy 2019, 21, 527. [Google Scholar] [CrossRef] [Green Version]
- Ronetti, F.; Acciai, M.; Ferraro, D.; Rech, J.; Jonckheere, T.; Martin, T.; Sassetti, M. Symmetry Properties of Mixed and Heat Photo-Assisted Noise in the Quantum Hall Regime. Entropy 2019, 21, 730. [Google Scholar] [CrossRef] [Green Version]
- Ridley, M.; Sentef, M.A.; Tuovinen, R. Electron Traversal Times in Disordered Graphene Nanoribbons. Entropy 2019, 21, 737. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, D.; Moskalets, M. Quantum Transport in Mesoscopic Systems. Entropy 2020, 22, 977. https://doi.org/10.3390/e22090977
Sánchez D, Moskalets M. Quantum Transport in Mesoscopic Systems. Entropy. 2020; 22(9):977. https://doi.org/10.3390/e22090977
Chicago/Turabian StyleSánchez, David, and Michael Moskalets. 2020. "Quantum Transport in Mesoscopic Systems" Entropy 22, no. 9: 977. https://doi.org/10.3390/e22090977
APA StyleSánchez, D., & Moskalets, M. (2020). Quantum Transport in Mesoscopic Systems. Entropy, 22(9), 977. https://doi.org/10.3390/e22090977