Shape Effect of Nanosize Particles on Magnetohydrodynamic Nanofluid Flow and Heat Transfer over a Stretching Sheet with Entropy Generation
Abstract
:1. Introduction
2. Mathematical Formulation
3. Solution via Homotopy Analysis Method
4. Entropy Generation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
T | Temperature of nanofluid (k) |
u, v | The velocity components (m/s) |
Stream function (m2/s) | |
Thermal conductivity of the nanofluid (W/m K) | |
Thermal conductivity of the fluid (W/m K) | |
Thermal conductivity of the solid (W/m K) | |
Specific heat capacity of the nanofluid (J/kg K) | |
Specific heat capacity of the fluid (J/kg K) | |
Specific heat capacity of the solid (J/kg K) | |
Density of the nanofluid (kg/m3) | |
Density of the fluid (kg/m3) | |
Density of the solid (kg/m3) | |
Solid volume fraction | |
Dynamic viscosity of the nanofluid (Ns/m2) | |
Ratio of volumetric entropy (W/m3K) | |
Characteristic entropy generation rate | |
Electric conductivity of nanofluid (S/m) | |
Dimensionless temperature difference | |
The imposed magnetic strength (kg/s2 A) | |
Brinkman number | |
Hartman number | |
Prandtl number | |
Shape variable | |
Nanofluid | |
Liquid | |
Solid |
Abbreviations
MHD | Magnetohydrodynamic |
PDEs | Partial differential equations |
ODEs | Ordinary differential equations |
HAM | Homotopy analysis method |
References
- Govindaraju, M.; Vishnu Ganesh, N.; Ganga, B.; Abdul Hakeem, A.K. Entropy generation analysis of magneto hydrodynamic flow of a nanofluid over a stretching sheet. J. Egypt Math. Soc. 2015, 23, 429–434. [Google Scholar] [CrossRef]
- Govindaraju, M.; Akilesh, M.; Abdul Hakeem, A.K. Analysis of entropy generation for nanofluid flow over a stretching sheet with an inclined magnetic field and uniform heat source/sink. J. Phys. Conf. Ser. 2018, 1139, 012010. [Google Scholar] [CrossRef] [Green Version]
- Sheikhzadeh, G.; Aghaei, A.; Ehteram, H.; Abbaszadeh, M. Analytical study of parameters affecting entropy generation of nanofluid turbulent flow in channel and micro-channel. Therm. Sci. 2016, 20, 2037–2050. [Google Scholar] [CrossRef] [Green Version]
- Ko, T.H.; Cheng, C.S. Numerical investigation on developing laminar forced convection and entropy generation in a wavy channel. Int. Commun. Heat Mass Transf. 2007, 34, 924–933. [Google Scholar] [CrossRef]
- Mahian, O.; Mahmud, S.; Heris, S.Z. Analysis of entropy generation between co-rotating cylinders using nanofluids. Energy 2012, 44, 438–446. [Google Scholar] [CrossRef]
- Tshehla, M.S.; Makinde, O.D. Analysis of entropy generation in a variable viscosity fluid flow between two concentric pipes with a convective cooling at the surface. Int. J. Phys. Sci. 2011, 6, 6053–6060. [Google Scholar] [CrossRef]
- Govindaraju, M.; Saranya, S.; Abdul Hakeem, A.K.; Jayaprakash, R.; Ganga, B. Analysis of slip MHD nanofluid flow on entropy generation in a stretching sheet. Procedia Eng. 2015, 127, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Berrehal, H.; Maougal, A. Entropy generation analysis for multi-walled carbon nanotube (MWCNT) suspended nanofluid flow over wedge with thermal radiation and convective boundary condition. J. Mech. Sci. Technol. 2019, 33, 459–464. [Google Scholar] [CrossRef]
- Malvandi, A.; Ganji, D.D.; Hedayati, F.; Yousefi Rad, E. An analytical study on entropy generation of nanofluids over a flat plate. Alexandria Eng. J. 2013, 52, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Acharya, N.; Das, K.; Kundu, P.K. On the heat transport mechanism and entropy generation in a nozzle of liquid rocket engine using ferrofluid: A computational framework. J. Comput. Des. Eng. 2019, 6, 739–750. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D.; Gorji-Bandpy, M.; Soleimani, S. Magnetic field effect on nanofluid flow and heat transfer using KKL model. J. Taiwan Inst. Chem. Eng. 2014, 45, 795–807. [Google Scholar] [CrossRef]
- Nadeem, S.; Haq, R.U.; Khan, Z.H. Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45, 121–126. [Google Scholar] [CrossRef]
- Rudraiah, N.; Barron, R.M.; Venkatachalappa, M.; Subbaraya, C.K. Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci. 1995, 33, 1075–1084. [Google Scholar] [CrossRef]
- Abbas, Z.; Javed, T.; Sajid, M.; Ali, N. Unsteady MHD flow and heat transfer on a stretching sheet in a rotating fluid. J. Taiwan Inst. Chem. Eng. 2010, 41, 644–650. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, A. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995; pp. 99–105. [Google Scholar]
- De Freitas Rosa, P.; Rodrigues Cirqueira, S.S.; Aguiar, M.L.; Bernardo, A. Synthesis and characterization of silver nanoparticles. Mater. Sci. Forum 2014, 802, 135–139. [Google Scholar]
- Atashafrooz, M. Effects of Ag-water nanofluid on hydrodynamics and thermal behaviors of three-dimensional separated step flow. Alexandria Eng. J. 2018, 57, 4277–4285. [Google Scholar] [CrossRef]
- Upreti, H.; Pandey, A.K.; Kumar, M. MHD flow of Ag-water nanofluid over a flat porous plate with viscous-Ohmic dissipation, suction/injection and heat generation/absorption. Alexandria Eng. J. 2018, 57, 1839–1847. [Google Scholar] [CrossRef]
- Suleman, M.; Ramzan, M.; Ahmad, S.; Lu, D.; Muhammad, T.; Chung, J.D. A numerical simulation of silver-water nanofluid flow with impacts of Newtonian heating and homogeneous-heterogeneous reactions past a nonlinear stretched cylinder. Symmetry 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Rashid, U.; Ibrahim, A. Impacts of nanoparticle shape on Al2O3-water nanofluid flow and heat transfer over a non-linear radically stretching sheet. Adv. Nanopart. 2020, 09, 23–39. [Google Scholar] [CrossRef]
- Wang, C.Y. Free Convection on a Vertical Stretching Surface. ZAMM Z. Angew. Math. Mech. 1989, 69, 418–420. [Google Scholar] [CrossRef]
Physical Properties | Ag | Water |
---|---|---|
(kg/m3) | 10,500 | 997.1 |
(J/kg K) | 235 | 4179 |
k (W/m K) | 429 | 0.60 |
Shapes | Blades | Sphere | Lamina |
---|---|---|---|
m | 8.6 | 3 | 16.1576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, U.; Baleanu, D.; Iqbal, A.; Abbas, M. Shape Effect of Nanosize Particles on Magnetohydrodynamic Nanofluid Flow and Heat Transfer over a Stretching Sheet with Entropy Generation. Entropy 2020, 22, 1171. https://doi.org/10.3390/e22101171
Rashid U, Baleanu D, Iqbal A, Abbas M. Shape Effect of Nanosize Particles on Magnetohydrodynamic Nanofluid Flow and Heat Transfer over a Stretching Sheet with Entropy Generation. Entropy. 2020; 22(10):1171. https://doi.org/10.3390/e22101171
Chicago/Turabian StyleRashid, Umair, Dumitru Baleanu, Azhar Iqbal, and Muhammd Abbas. 2020. "Shape Effect of Nanosize Particles on Magnetohydrodynamic Nanofluid Flow and Heat Transfer over a Stretching Sheet with Entropy Generation" Entropy 22, no. 10: 1171. https://doi.org/10.3390/e22101171
APA StyleRashid, U., Baleanu, D., Iqbal, A., & Abbas, M. (2020). Shape Effect of Nanosize Particles on Magnetohydrodynamic Nanofluid Flow and Heat Transfer over a Stretching Sheet with Entropy Generation. Entropy, 22(10), 1171. https://doi.org/10.3390/e22101171