Dynein-Inspired Multilane Exclusion Process with Open Boundary Conditions
Abstract
:1. Introduction
2. Model Description and Dynamics
- (i)
- Attachment: One unit of ATP attaches to the empty primary binding site with a fixed probability or to any of the available secondary sites with an also constant probability, .
- (ii)
- Detachment: One unit of ATP detaches either from the primary site with the fixed rate or from one of the three secondary sites with the constant probability .
- (iii)
- ATP hydrolysis: An occupied primary site hydrolyses ATP to ADP to generate mechanical energy that enables it to perform movement. This ATP binding induces dissociation of the motor from the microtubule. After detaching from the microtubule, the motor rearranges its structure and becomes poised for the powerstroke movement, triggered by the ATP hydrolysis. This structural change is followed by a diffusional search for the target binding site over the microtubule [20,21]. Thus, if the primary binding site is occupied, the motor attempts to hop steps, where s is the number of secondary sites holding ATP (thus, s can be either 1, 2, or 3).
Phase Diagram of the One-Dimensional TASEP with Hop Rate r
- (a)
- Low-density phase (LD): In this phase, the bulk stationary density saturates to a constant value , which yields the stationary current . Near the exit boundary, the density corresponds to .
- (b)
- High-density phase (HD): Here, the bulk stationary density is , thus the steady-state particle current is given by .
- (c)
- Maximal-current phase (MC): The maximal particle current is obtained when the density in the bulk is and hence for and . Near the boundaries, the density deviation from its bulk value shows power law decay, which indicates the presence of long-range correlations in the system.
3. Results
3.1. Phase Diagram for Dynein Particles in One Dimension
3.2. Phase Diagram for Dynein Particles in Two Dimensions
3.3. Dynamics of Dynein Particles in Two Dimensions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Howard, J. Mechanics of Motor Proteins and the Cytoskeleton; Sinauer Associates: Sunderland, MA, USA, 2001. [Google Scholar]
- Schliwa, M.; Woehlke, G. Molecular motors. Nature 2007, 76, 021112. [Google Scholar]
- Bustamante, C.; Keller, D.; Oster, G. The Physics of Molecular Motors. Acc. Chem. Res. 2001, 34, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.; Mallick, K.; Zia, R. Non-equilibrium statistical mechanics: From a paradigmatic model to biological transport. Rep. Prog. Phys. 2011, 74, 116601. [Google Scholar] [CrossRef]
- Chowdhury, D.; Schadschneider, A.; Nishinari, K. Physics of transport and traffic phenomena in biology: From molecular motors and cells to organisms. Phys. Life Rev. 2005, 2, 318–352. [Google Scholar] [CrossRef] [Green Version]
- Schadschneider, A. Modelling of Transport and Traffic Problems. In Cellular Automata; Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 22–31. [Google Scholar]
- Helbing, D. Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 2001, 73, 1067–1141. [Google Scholar] [CrossRef] [Green Version]
- Mallik, R.; Carter, B.C.; Lex, S.A.; King, S.J.; Gross, S.P. Cytoplasmic dynein functions as a gear in response to load. Nature 2004, 427, 649–652. [Google Scholar] [CrossRef]
- Bhabha, G.; Johnson, G.T.; Schroeder, C.M.; Vale, R.D. How Dynein Moves Along Microtubules. Trends Biochem. Sci. 2016, 41, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Reck-Peterson, S.L.; Yildiz, A.; Carter, A.P.; Gennerich, A.; Zhang, N.; Vale, R.D. Single-molecule analysis of dynein processivity and stepping behavior. Cell 2006, 126, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Toba, S.; Watanabe, T.M.; Yamaguchi-Okimoto, L.; Toyoshima, Y.Y.; Higuchi, H. Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 2006, 103, 5741–5745. [Google Scholar] [CrossRef] [Green Version]
- Ferro, L.S.; Can, S.; Turner, M.A.; ElShenawy, M.M.; Yildiz, A. Kinesin and dynein use distinct mechanisms to bypass obstacles. eLife 2019, 8, e48629. [Google Scholar] [CrossRef]
- Brunnbauer, M.; Dombi, R.; Ho, T.H.; Schliwa, M.; Rief, M.; Ökten, Z. The Highly Processive Kinesin-8, Kip3, Switches Microtubule Protofilaments with a Bias toward the Left. Mol. Cell 2012, 46, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Bormuth, V.; Nitzsche, B.; Ruhnow, F.; Mitra, A.; Storch, M.; Rammner, B.; Howard, J.; Diez, S. The Highly Processive Kinesin-8, Kip3, Switches Microtubule Protofilaments with a Bias toward the Left. Biophys. J. 2012, 103, L4–L6. [Google Scholar] [CrossRef] [Green Version]
- Wilke, P.; Reithmann, E.; Frey, E. Two-Species Active Transport along Cylindrical Biofilaments is Limited by Emergent Topological Hindrance. Phys. Rev. X 2018, 8, 031063. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.P.; Mallik, R.; Gross, S.P.; Clare, C.Y. Monte Carlo modeling of single-molecule cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 2005, 102, 12059–12064. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.K.; Rai, A.; Ramaiya, A.J.; Jha, R.; Mallik, R. Molecular adaptations allow dynein to generate large collective forces inside cells. Cell 2013, 152, 172–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunwar, A.; Schadschneider, A.; Chowdhury, D. From aggressive driving to molecular motor traffic. J. Phys. A Math. Gen. 2006, 39, 14263–14287. [Google Scholar] [CrossRef] [Green Version]
- Nandi, R.; Priyanka. One Dimensional Exclusion Process with Dynein Inspired Hops: Simulation and Mean Field Analysis. J. Stat. Phys. 2021, 182, 29. [Google Scholar] [CrossRef]
- Roberts, A.J.; Kon, T.; Knight, P.J.; Sutoh, K.; Burgess, S.A. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 2013, 14, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Mogami, T.; Kon, T.; Ito, K.; Sutoh, K. Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein. Rev. Mod. Phys. 2007, 282, 21639–21644. [Google Scholar]
- Derrida, B.; Domany, E.; Mukamel, D. An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 1992, 69, 667–687. [Google Scholar] [CrossRef]
- Schutz, G. Exactly Solvable Models for Many-Body Systems Far from Equilibrium; Academic Press: Cambridge, MA, USA, 2000; Volume 19, pp. 1–251. [Google Scholar]
- Otwinowski, J.; Boettcher, S. A totally asymmetric exclusion process with hierarchical long range connections. J. Stat. Mech. Theory Exp. 2009, 2009, P07010. [Google Scholar] [CrossRef]
- Gupta, S.; Majumdar, S.N.; Godrèche, C.; Barma, M. Tagged particle correlations in the asymmetric simple exclusion process: Finite-size effects. Phys. Rev. E 2007, 76, 021112. [Google Scholar] [CrossRef] [Green Version]
- Priyanka; Jain, K. Critical dynamics of the jamming transition in one-dimensional nonequilibrium lattice-gas models. Phys. Rev. E 2016, 93, 042104. [Google Scholar] [CrossRef] [Green Version]
- Daquila, G.L.; Täuber, U.C. Slow relaxation and aging kinetics for the driven lattice gas. Phys. Rev. E 2011, 83, 051107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.C.; Spudich, J.A.; Parker, D.; Delp, S.L. Extending the absorbing boundary method to fit dwell-time distributions of molecular motors with complex kinetic pathways. Proc. Natl. Acad. Sci. USA 2007, 104, 3171–3176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandi, R.; Täuber, U.C.; Priyanka. Dynein-Inspired Multilane Exclusion Process with Open Boundary Conditions. Entropy 2021, 23, 1343. https://doi.org/10.3390/e23101343
Nandi R, Täuber UC, Priyanka. Dynein-Inspired Multilane Exclusion Process with Open Boundary Conditions. Entropy. 2021; 23(10):1343. https://doi.org/10.3390/e23101343
Chicago/Turabian StyleNandi, Riya, Uwe C. Täuber, and Priyanka. 2021. "Dynein-Inspired Multilane Exclusion Process with Open Boundary Conditions" Entropy 23, no. 10: 1343. https://doi.org/10.3390/e23101343
APA StyleNandi, R., Täuber, U. C., & Priyanka. (2021). Dynein-Inspired Multilane Exclusion Process with Open Boundary Conditions. Entropy, 23(10), 1343. https://doi.org/10.3390/e23101343