Model-Based Prediction of an Effective Adhesion Parameter Guiding Multi-Type Cell Segregation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Differential Migration Model
- Lattice: The PCA works on a squared lattice with periodic boundaries and we set throughout our numerical analysis.
- Cells: To emulate biological cells, every lattice site is assigned a cell type of all possible cell types in the system. In this way each cell regardless of its type, has approximately the same size and occupies exactly one lattice site. The number of cells of each type remains constant during the sorting process.
- Configurations: A configuration of the lattice S represents the state of the model at time t. It belongs to the set of all possible configurations .
- Migration: A configuration is changed by a cell position switch involving two adjacent lattice sites x and y with :Position switches between two cells of the same type do not change the configuration and are therefore neglected. Thus, neighboring cells situated at lattice sites x and y only switch their positions if they are heterotypic, i.e., .
- Differential adhesion: We assume that stronger bonds to neighboring cells hinder cell motility. Accordingly, a cell switch occurs with rate . The rate depends on the parameters and , which represent the binding strengths between cells at lattice sites x and y to positions from the von-Neumann-1 neighborhoods and , see Figure 1. The von-Neumann-1 neighborhood of a lattice site corresponds to all neighboring lattice sites with Manhattan distance one. The cell switch rate of the two adjacent lattice sites with and is as follows:
2.2. Order Indicator
3. Results
3.1. Cell System Parameters for Two Cell Types
3.2. The Effective Adhesion Parameter for Arbitrary Number of Cell Types
3.3. Numerical Evidence for the Effective Adhesion Parameter
3.3.1. The Asymptotic Level of Cell Segregation Depends on the Effective Adhesion Parameter
3.3.2. Estimating the Effective Adhesion Parameter Using Statistical Learning Methods
3.4. The Impact of Interfacial Tension, Adhesion or Repulsion on Cell Segregation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. PCA Implementation
Algorithm A1 The PCA Algorithm. |
Appendix A.1. initializeLattice
Appendix A.2. initializeSupportDataStructure
Appendix A.3. checkSimulationRunCondition
Appendix A.4. getOneRandomCellSwitch
Appendix A.5. getLatticeSitesAssociatedToCellSwitch
Appendix A.6. interchangeLatticeOccupationsAtSites
Appendix A.7. getAffectedLatticeSites
Appendix A.8. getNeighborsOfLatticeSite
Appendix A.9. getCellSwitchRate
Appendix A.10. checkLatticeSitesAreHeterotypic
Appendix A.11. updateSdsEntryForLatticeSiteWithData
Appendix B. Order Indicator
2-Cell-Type Systems | 3-Cell-Type Systems | |
---|---|---|
1200 | 1175 | |
50 | 0 |
Appendix C. Numerical Evidence for the Effective Adhesion Parameter with Extended Cell-Type Number
(a) 4-cell-type systems | Model | |||
---|---|---|---|---|
Accuracy | ||||
SVM | 1.0000 | −0.6553 | 0.8022 | 0.9615 |
Logit | 1.0000 | −0.6625 | 0.7330 | 0.9610 |
Theoretical prediction | 1 | −2/3 | 0 | |
(b) 5-cell-type systems | Model | |||
Accuracy | ||||
SVM | 1.0000 | −0.5030 | 0.5889 | 0.9555 |
Logit | 1.0000 | −0.4913 | 0.5992 | 0.9565 |
Theoretical prediction | 1 | −0.5 | 0 |
Appendix D. The Impact of the Effective Adhesion Parameter on the Convergence Speed
Appendix E. Statistical Learning Methods
- SVM: used algorithm implementation “SVC”
- SVM: kernel “linear”
- Logit: used training algorithm/solver “lbfgs”
References
- Heisenberg, C.P.; Bellaïche, Y. Forces in Tissue Morphogenesis and Patterning. Cell J. 2013, 153, 948–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtfreter, J. Gewebsaffinität, ein Mittel der embryonalen Formbildung. Arch. Exp. Zellforsch. 1939, 23, 169–209. [Google Scholar]
- Townes, P.L.; Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 1955, 128, 53–120. [Google Scholar] [CrossRef]
- Armstrong, P.B. Light and electron microscope studies of cell sorting in combinations of chick embryo neural retina and retinal pigment epithelium. Wilhelm Roux Arch. Entwickl. Mech. Org. 1971, 168, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.B. Cell sorting out: The self-assembly of tissues in vitro. Crit. Rev. Biochem. Mol. Biol. 1989, 24, 119–149. [Google Scholar] [CrossRef] [PubMed]
- Beysens, D.A.; Forgacs, G.; Glazier, J.A. Cell sorting is analogous to phase ordering in fluids. Proc. Natl. Acad. Sci. USA 2000, 97, 9467–9471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Méhes, E.; Mones, E.; Németh, V.; Vicsek, T. Collective Motion of Cells Mediates Segregation and Pattern Formation in Co-Cultures. PLoS ONE 2012, 7, e31711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, M.S. On the Mechanism of Tissue Reconstruction by Dissociated Cells, Iii. Free Energy Relations and the Reorganization of Fused, Heteronomic Tissue Fragments. Proc. Natl. Acad. Sci. USA 1962, 48, 1769–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.K. Is Cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 1976, 61, 267–285. [Google Scholar] [CrossRef]
- Brodland, G.W.; Chen, H.H. The mechanics of heterotypic cell aggregates: Insights from computer simulations. J. Biomech. Eng. 2000, 122, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Canty, L.; Zarour, E.; Kashkooli, L.; François, P.; Fagotto, F. Sorting at embryonic boundaries requires high heterotypic interfacial tension. Nat. Commun. 2017, 8, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss-Böhme, A.; Deutsch, A. The cellular basis of cell sorting kinetics. J. Theor. Biol. 2010, 263, 419–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ventrella, R.; Kaplan, N.; Getsios, S. Asymmetry at cell-cell interfaces direct cell sorting, boundary formation, and tissue morphogenesis. Exp. Cell Res. 2017, 358, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.M.; Lobo, D. Continuous Dynamic Modeling of Regulated Cell Adhesion: Sorting, Intercalation, and Involution. Biophys. J. 2019, 117, 2166–2179. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, N.; Warner, H.V.; Peirce, S.M.; Lazzara, M.J. Agent-Based Model of Multicellular Spheroid Pattern Formation Driven by Synthetic Cell Adhesion Signaling Circuits. bioRxiv 2021. [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Franke, F.; Aland, S.; Böhme, H.J.; Voss-Böhme, A.; Lange, S. Is Cell segregation just like oil and water? arXiv 2021, arXiv:2109.00364. [Google Scholar]
(a) 2-cell-type systems | Model | |||
---|---|---|---|---|
Accuracy | ||||
SVM | 1.0000 | −1.9764 | −0.0374 | 0.9965 |
Logit | 1.0000 | −1.9763 | −0.0455 | 0.9965 |
Theoretical prediction | 1 | −2 | 0 | |
(b) 3-cell-type systems | Model | |||
Accuracy | ||||
SVM | 1.0000 | −0.9994 | 0.2835 | 0.9895 |
Logit | 1.0000 | −0.9935 | 0.2624 | 0.9900 |
Theoretical prediction | 1 | −1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossbach, P.; Böhme, H.-J.; Lange, S.; Voss-Böhme, A. Model-Based Prediction of an Effective Adhesion Parameter Guiding Multi-Type Cell Segregation. Entropy 2021, 23, 1378. https://doi.org/10.3390/e23111378
Rossbach P, Böhme H-J, Lange S, Voss-Böhme A. Model-Based Prediction of an Effective Adhesion Parameter Guiding Multi-Type Cell Segregation. Entropy. 2021; 23(11):1378. https://doi.org/10.3390/e23111378
Chicago/Turabian StyleRossbach, Philipp, Hans-Joachim Böhme, Steffen Lange, and Anja Voss-Böhme. 2021. "Model-Based Prediction of an Effective Adhesion Parameter Guiding Multi-Type Cell Segregation" Entropy 23, no. 11: 1378. https://doi.org/10.3390/e23111378
APA StyleRossbach, P., Böhme, H. -J., Lange, S., & Voss-Böhme, A. (2021). Model-Based Prediction of an Effective Adhesion Parameter Guiding Multi-Type Cell Segregation. Entropy, 23(11), 1378. https://doi.org/10.3390/e23111378