Unconditional Authentication Based on Physical Layer Offered Chain Key in Wireless Communication
Abstract
:1. Introduction
1.1. Physical Layer Authentication
1.2. Related Works
1.3. Our Contributions
- We derive the lower bound of unconditional authentication based on an unchanged key. We assume the adversary Mallory with unlimited computing resources and analyze the impersonation and substitution attacks. The probability of deception is strictly derived from the perspective of information theory, where is the entropy of the shared key. However, the lower bound holds only for sending one authenticated message. The same key can not be used twice.
- Physical layer offered chain key (PHYLOCK) structure [25] is introduced to provide one-time keys for unconditional authentication so that we can achieve the lower bound . PHYLOCK can provide the root of trust for key generation and authentication. We conduct a security analysis of PHYLOCK and prove that PHYLOCK is more secure than the traditional physical layer key generation.
- Some conditions of unconditional authentication are listed. To realize the lower bound of unconditional authentication, encoding rules need to comply with some conditions. The conditions show that the length of the key and the authentication code are twice the length of the message.
2. System and Authentication Model
3. Lower Bound of Unconditional Authentication Based on an Unchanged Key
- (a)
- Alice and Bob use the keys at random, equally likely and independent of the message m. Therefore, we have . Mallory is not subject to this restriction. He can use the keys in any way to help increase .
- (b)
- All coded messages are equally likely. In other words, every message is equally important. Alice and Bob do not have to protect some messages exclusively.
- (c)
- Mallory picks at random from the coded messages different from , all equally likely.
- (d)
- Any different messages , cannot be encoded into the same c, i.e., , hold for all , , if . This restriction only strengthens the lower bound of deception probability because there may be better strategies for Mallory if .
4. Security Analysis under Pseudo-Random Key
5. Unconditional Authentication Based on PHYLOCK
5.1. The Structure and Procedure of PHYLOCK
Algorithm 1 The procedure of unconditional authentication based on PHYLOCK. |
Input: The initial key, ; The wireless channel state information, ; Output: The chain keys, ;
|
5.2. Security Analysis of PHYLOCK
5.2.1. Analysis for Case 1
5.2.2. Analysis for Case 2
5.2.3. Analysis for Case 3
5.2.4. Analysis for Correlated Channel Attack
5.3. Definition and Conditions of Unconditional Authentication
- (i)
- Every pair of bundles, from to and to , with , has only one key in common.
- (ii)
- Every bundle contains keys.
- (iii)
- There are bundles at each m.
- (iv)
- The length of the message m is no more than half the length of the key and the length of the code.
- (v)
- The key needs to be changed through our proposed PHYLOCK key generation architecture for every piece of the message.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shakiba-Herfeh, M.; Chorti, A.; Poor, H.V. Physical layer security: Authentication, integrity, and confidentiality. In Physical Layer Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 129–150. [Google Scholar]
- Yang, J.; Johansson, T. An overview of cryptographic primitives for possible use in 5G and beyond. Sci. China Inf. Sci. 2020, 63, 1–22. [Google Scholar] [CrossRef]
- Bai, L.; Zhu, L.; Liu, J.; Choi, J.; Zhang, W. Physical layer authentication in wireless communication networks: A survey. J. Commun. Inf. Netw. 2020, 5, 237–264. [Google Scholar]
- Simmons, G.J. Authentication theory/coding theory. In Workshop on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1984; pp. 411–431. [Google Scholar]
- Liu, Y.; Boncelet, C. The CRC-NTMAC for noisy message authentication. In Proceedings of the MILCOM 2005-2005 IEEE Military Communications Conference, Atlantic City, NJ, USA, 17–20 October 2005; pp. 2775–2781. [Google Scholar]
- Fang, H.; Wang, X.; Hanzo, L. Adaptive trust management for soft authentication and progressive authorization relying on physical layer attributes. IEEE Trans. Commun. 2020, 68, 2607–2620. [Google Scholar] [CrossRef] [Green Version]
- Tsudik, G. Message authentication with one-way hash functions. ACM SIGCOMM Comput. Commun. Rev. 1992, 22, 29–38. [Google Scholar] [CrossRef]
- Dodis, Y.; Kiltz, E.; Pietrzak, K.; Wichs, D. Message authentication, revisited. In Annual International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2012; pp. 355–374. [Google Scholar]
- Xie, N.; Zhang, S.; Liu, A.X. Physical-layer authentication in non-orthogonal multiple access systems. IEEE/ACM Trans. Netw. 2020, 28, 1144–1157. [Google Scholar] [CrossRef]
- Zhang, P.; Shen, Y.; Jiang, X.; Wu, B. Physical layer authentication jointly utilizing channel and phase noise in MIMO systems. IEEE Trans. Commun. 2020, 68, 2446–2458. [Google Scholar] [CrossRef]
- Xiao, L.; Sheng, G.; Wan, X.; Su, W.; Cheng, P. Learning-based PHY-layer authentication for underwater sensor networks. IEEE Commun. Lett. 2018, 23, 60–63. [Google Scholar] [CrossRef]
- Yang, J.; Ji, X.; Huang, K.; Chen, Y.; Xu, X.; Yi, M. Unified and fast handover authentication based on link signatures in 5G SDN-based HetNet. IET Commun. 2019, 13, 144–152. [Google Scholar] [CrossRef]
- Pan, F.; Pang, Z.; Wen, H.; Luvisotto, M.; Xiao, M.; Liao, R.F.; Chen, J. Threshold-free physical layer authentication based on machine learning for industrial wireless CPS. IEEE Trans. Ind. Inform. 2019, 15, 6481–6491. [Google Scholar] [CrossRef]
- Choi, J. A Coding Approach With Key-Channel Randomization for Physical-Layer Authentication. IEEE Trans. Inf. Forensics Secur. 2019, 14, 175–185. [Google Scholar] [CrossRef]
- Xiao, L.; Reznik, A.; Trappe, W.; Ye, C.; Shah, Y.; Greenstein, L.; Mandayam, N. PHY-authentication protocol for spoofing detection in wireless networks. In Proceedings of the 2010 IEEE Global Telecommunications Conference GLOBECOM, Miami, FL, USA, 6–10 December 2010; pp. 1–6. [Google Scholar]
- Shan, D.; Zeng, K.; Xiang, W.; Richardson, P.; Dong, Y. PHY-CRAM: Physical layer challenge-response authentication mechanism for wireless networks. IEEE J. Sel. Areas Commun. 2013, 31, 1817–1827. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Yang, Z.; Ling, C.; Xia, X.G. Artificial-noise-aided physical layer phase challenge-response authentication for practical OFDM transmission. IEEE Trans. Wirel. Commun. 2016, 15, 6611–6625. [Google Scholar] [CrossRef]
- Yu, J.; Hu, A.; Li, G.; Peng, L. A multi-sampling convolutional neural network-based RF fingerprinting approach for low-power devices. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 1–6. [Google Scholar]
- Luo, Y.; Hu, H.; Wen, Y.; Tao, D. Transforming device fingerprinting for wireless security via online multitask metric learning. IEEE Internet Things J. 2019, 7, 208–219. [Google Scholar] [CrossRef]
- Ding, L.; Wang, S.; Wang, F.; Zhang, W. Specific emitter identification via convolutional neural networks. IEEE Commun. Lett. 2018, 22, 2591–2594. [Google Scholar] [CrossRef]
- Ramadhani, F.; Ramadhani, U.; Basit, L. Combination of Hybrid Cryptography In One Time Pad (OTP) Algorithm And Keyed-Hash Message Authentication Code (HMAC) In Securing The Whatsapp Communication Application. J. Comput. Sci. Inf. Technol. Telecommun. Eng. 2020, 1, 31–36. [Google Scholar] [CrossRef]
- Saldamli, G.; Ertaul, L.; Shankaralingappa, A. Analysis of lightweight message authentication codes for IoT environments. In Proceedings of the 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019; pp. 235–240. [Google Scholar]
- Chen, D.; Cheng, N.; Zhang, N.; Zhang, K.; Qin, Z.; Shen, X. Multi-message authentication over noisy channel with polar codes. In Proceedings of the 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Orlando, FL, USA, 22–25 October 2017; pp. 46–54. [Google Scholar]
- Chen, D.; Zhang, N.; Cheng, N.; Zhang, K.; Qin, Z.; Shen, X. Physical layer based message authentication with secure channel codes. IEEE Trans. Dependable Secur. Comput. 2018, 17, 1079–1093. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Hu, X.; Sun, X.; Lou, Y.; Huang, K.; Zhong, Z.; Xu, X. Native Security Scheme Based on Physical Layer Chain Key for Encryption and Authentication. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Nanjing, China, 9–29 March 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.H. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 2017, 7, 114–117. [Google Scholar] [CrossRef]
- Ma, W.; Qi, C.; Zhang, Z.; Cheng, J. Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO. IEEE Trans. Commun. 2020, 68, 2838–2849. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Rajendran, S.; Sun, Z.; Woods, R.; Hanzo, L. Physical layer security for the Internet of Things: Authentication and key generation. IEEE Wirel. Commun. 2019, 26, 92–98. [Google Scholar] [CrossRef]
- Smith, R.E. A contemporary look at Saltzer and Schroeder’s 1975 design principles. IEEE Secur. Priv. 2012, 10, 20–25. [Google Scholar] [CrossRef]
- Gilbert, E.N.; MacWilliams, F.J.; Sloane, N.J. Codes which detect deception. Bell Syst. Tech. J. 1974, 53, 405–424. [Google Scholar] [CrossRef]
- Gorbenko, I.; Kuznetsov, A.; Lutsenko, M.; Ivanenko, D. The research of modern stream ciphers. In Proceedings of the 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), Kharkov, Ukraine, 10–13 October 2017; pp. 207–210. [Google Scholar]
- Manifavas, C.; Hatzivasilis, G.; Fysarakis, K.; Papaefstathiou, Y. A survey of lightweight stream ciphers for embedded systems. Secur. Commun. Netw. 2016, 9, 1226–1246. [Google Scholar] [CrossRef] [Green Version]
- Courtois, N.T.; Meier, W. Algebraic attacks on stream ciphers with linear feedback. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2003; pp. 345–359. [Google Scholar]
- Lano, J.; Mentens, N.; Preneel, B.; Verbauwhede, I. Power analysis of synchronous stream ciphers with resynchronization mechanism. Int. J. Intell. Inf. Technol. Appl. 2008, 1, 327–333. [Google Scholar]
- Zeng, K. Physical layer key generation in wireless networks: Challenges and opportunities. IEEE Commun. Mag. 2015, 53, 33–39. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, N.; Wang, P.; Alipour-Fanid, A.; Tang, J.; Zeng, K. Physical layer key generation in 5G wireless networks. IEEE Wirel. Commun. 2019, 26, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Aldaghri, N.; Mahdavifar, H. Physical layer secret key generation in static environments. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2692–2705. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Mathur, S.; Reznik, A.; Shah, Y.; Trappe, W.; Mandayam, N.B. Information-theoretically secret key generation for fading wireless channels. IEEE Trans. Inf. Forensics Secur. 2010, 5, 240–254. [Google Scholar]
- Li, G.; Hu, A.; Zhang, J.; Peng, L.; Sun, C.; Cao, D. High-agreement uncorrelated secret key generation based on principal component analysis preprocessing. IEEE Trans. Commun. 2018, 66, 3022–3034. [Google Scholar] [CrossRef]
- Ji, Z.; Yeoh, P.L.; Zhang, D.; Chen, G.; Zhang, Y.; He, Z.; Yin, H.; Li, Y. Secret key generation for intelligent reflecting surface assisted wireless communication networks. IEEE Trans. Veh. Technol. 2020, 70, 1030–1034. [Google Scholar] [CrossRef]
- Huang, K.W.; Wang, H.M. Intelligent reflecting surface aided pilot contamination attack and its countermeasure. IEEE Trans. Wirel. Commun. 2020, 20, 345–359. [Google Scholar] [CrossRef]
- Xu, W.; Yuan, C.; Xu, S.; Ngo, H.Q.; Xiang, W. On pilot spoofing attack in massive MIMO systems: Detection and countermeasure. IEEE Trans. Inf. Forensics Secur. 2020, 16, 1396–1409. [Google Scholar] [CrossRef]
- Hu, X.; Jin, L.; Huang, K.; Ma, K.; Xiao, S. A Secure Communication Scheme Based on Equivalent Interference Channel Assisted by Physical Layer Secret Keys. Secur. Commun. Netw. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Huang, K.; Xu, X.; Hu, X.; Yang, J.; Jin, L. Unconditional Authentication Based on Physical Layer Offered Chain Key in Wireless Communication. Entropy 2022, 24, 488. https://doi.org/10.3390/e24040488
Wang S, Huang K, Xu X, Hu X, Yang J, Jin L. Unconditional Authentication Based on Physical Layer Offered Chain Key in Wireless Communication. Entropy. 2022; 24(4):488. https://doi.org/10.3390/e24040488
Chicago/Turabian StyleWang, Shaoyu, Kaizhi Huang, Xiaoming Xu, Xiaoyan Hu, Jing Yang, and Liang Jin. 2022. "Unconditional Authentication Based on Physical Layer Offered Chain Key in Wireless Communication" Entropy 24, no. 4: 488. https://doi.org/10.3390/e24040488
APA StyleWang, S., Huang, K., Xu, X., Hu, X., Yang, J., & Jin, L. (2022). Unconditional Authentication Based on Physical Layer Offered Chain Key in Wireless Communication. Entropy, 24(4), 488. https://doi.org/10.3390/e24040488