A Spatiotemporal Probabilistic Graphical Model Based on Adaptive Expectation-Maximization Attention for Individual Trajectory Reconstruction Considering Incomplete Observations
Abstract
:1. Introduction
- A spatiotemporal probabilistic graphical model (STPGM) is proposed with global and local interactive representation to capture the complex spatiotemporal dependencies between individuals and system components (stations or trains) and obtain the individual trajectory at the train level, operating without manual survey data input.
- Considering the sensitivity of the expectation-maximization (EM) approach to initial parameters, a novel data-driven parameter estimation framework is developed called the Adaptive Expectation-Maximization Attention Algorithm (AEMA). It can autonomously alternate between maximum likelihood estimation and latent variable information interpolation to return the missing information we want while ensuring fast and stable convergence.
- Actual individual trajectory tracking (ITT) data is used to compare baselines on multiple OD pair datasets, thereby confirming the effectiveness and robustness of the proposed approach, STPGM-AEMA.
2. Problem Description
3. Methodology
3.1. Framework
- Potential Sets Mining. Considering the sequential nature of passengers’ behaviors in spatiotemporal events, wherein each event is dependent on the preceding specific event, the get-off-leave-now (GOLN) principle is introduced. A feasible train alternative set for a journey as well as an egress time alternative set at the destination station of the individual are obtained, combined with complex spatiotemporal constraints and a combinatorial enumeration algorithm. This strategy can effectively reduce the space of candidate solutions under the premise of guaranteeing accuracy for subsequent computations.
- Modeling. In order to suppress the bias caused by small-sample randomness, global and local latent variables are introduced to model the complex spatiotemporal dependencies of all trips and observed components (stations, trains) in the URT system. The construction of the model consists of three steps: dataset segmentation, global-local interaction representation, and trajectory inference. The main details of the model are presented in Section 3.3.
- Parameter Estimation. To obtain the optimal parameters of the model and infer the most probable trajectories, an adaptive expectation-maximizing attention (AEMA) parameter learning method is proposed, which integrates a base adaptive embedding unit (UB), which provides automated a priori parameters to the likelihood function. Next, the introduction of the key-value attention computation unit (UA), where train labels can be matched to every individual trajectory. Details of the algorithm are given in Section 4.
3.2. Potential Sets Mining
3.3. Modeling
- The data is divided into deterministic dataset and stochastic dataset in order to generate prior samples.
- A global-local interaction module is devised to transform the problem from maximizing the probability of individual trajectories to posterior parameter estimation based on the basis function. Building upon this foundation, boarding and alighting events are inferred by estimating egress time , then determining access time and waiting for the event through MCMC simulation, thereby achieving comprehensive inference of unknown events and latent states in trajectories. The modeling process consists of three steps which are described in detail below.
3.3.1. Dataset Split
3.3.2. Global-Local Interactive Representation
3.3.3. Trajectory Inference
4. Parameter Estimation
4.1. Input Unit (UI)
4.2. Bases Adaptability Embedding Unit (UB)
4.3. Expectation-Step Unit (UE)
4.4. Key-Value Attention Calculation Unit (UA)
4.5. Maximization-Step Unit (UM)
4.6. Output Unit (UO)
5. Experiments
5.1. Dataset Description
5.1.1. Design of Individual Trajectory Tracking Simulation Experiment
5.1.2. Data Introduction
Description | Dataset | D1 | D2 | D3 | D4 |
---|---|---|---|---|---|
I. Base Information | OD pair | TTYB-DD | CY-DS | PHY-TTYB | HJL-CY |
Line | 5 | 6 | 5 | 6 | |
Station Numbers | 17 | 10 | 21 | 7 | |
Distance(m) | 19,700 | 15,771 | 24,480 | 11,859 | |
II. Validation Data | Time Duration | 07:00–09:00 a.m. | 17:00–19:00 | ||
Day | 2023.03.21 | 2023.03.22 | 2023.03.21 | 2023.03.22 | |
ITT Numbers | 21 | 19 | 20 | 18 | |
III. Training Data | Days | 6 | 6 | 4 | 4 |
AFC Samples | 1359 | 699 | 206 | 1587 | |
Train Numbers | 340 | 309 | 225 | 195 |
5.2. Baselines
- LTRM (Last Train Rule-based Model): Spatiotemporal Segmentation of Metro Trips algorithm searching for “BORDER-WALKERS” using the nearest timestamp principle, proposed by Zhang et al. [15], wherein the train’s departure time closest to the passenger’s tap-out time at the destination station was utilized to determine the train they boarded. Luo et al. [45] also employed this rule to infer passenger trajectories. Furthermore, both studies assumed “speed invariance” as a behavioral postulate.
- PTAM-MLE (Passenger-to-Train Assignment Model with MLE): Zhu et al. [20] proposed a probabilistic approach, named PTAM, which requires AFC/AVL data and the station’s walking speed distribution as inputs. To ensure consistency in measuring speed, this paper replaces it with their later proposed LBPMF [42], where the input is the egress/access time distribution and the likelihood function is expressed accordingly.
- MPTAM-EM (Modified Passenger-to-Train Assignment Model with EM): A modified model MPTAM was constructed by Xiong et al. [12], and the EM algorithm was proposed for estimating the parameters of the egress time distribution and the boarding probability distribution function, and the likelihood function was formulated by them.
- STPGM-EMA (without UB): The proposed STPGM-AEMA algorithm forms the basis of this method, which entails the removal of the UB module.
- STPGM-AEM (without UA): Similarly, the proposed STPGM-AEMA algorithm forms the basis of this method, which entails the removal of the UA module.
5.3. Evaluation Metrics
5.3.1. Accuracy Evaluation Metrics
5.3.2. Consistency Evaluation Metric
5.4. Result
5.4.1. Accuracy Evaluation Results
5.4.2. Consistency Test Result
5.5. Results Interpretability Discussion
5.5.1. Potential Train Sets Feature Analysis
5.5.2. Analysis of Latent Variable Z Distribution
5.5.3. Analysis of the Changing Process of Attention Mechanism
5.5.4. Individual Trajectory Visualization
5.5.5. Residual Analysis of Trajectory Reconstruction Fragments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Notations and Definitions
Symbol | Definition |
Passenger index. | |
, | The origin and destination stations of an individual trip, respectively. |
, | The tap-in and tap-out time of an individual trip index, respectively. |
Itinerary index, where indicates that passenger enter the origin station at and leave the destination station at , abbreviated as . | |
, | The tap-in and tap-out time of an individual itinerary. |
Train index of all trains between OD pairs. | |
A unique symbol representing the ID of train in journal . | |
, , , | The arrival time and departure time at origin station /destination station of the train , respectively. |
, , , | The order number of the train at first station , station , station and last station . |
, | The set of feasible train choices at origin station /destination station for an itinerary , respectively. |
The set of feasible train choices for an itinerary , denoted as , with the index being , represents the ordered sequence of train options available. The total length of this sequence is, with the dimension being . | |
The potential set of egress time for an itinerary , denoted as , abbreviated as . | |
The potential egress time value for passenger in itinerary . |
Appendix B. The Recorded Data from the Trajectory Simulation Experiment
Date | 2023/3/21 | ||||
PID | 15****36 | ||||
Itinerary index | 234 | ||||
L1 | S1 | Tap-in Time | To platform | Boarding Time | Train Departure Time |
6 | 623 | 17:34:50 | 17:36:55 | 17:38:40 | 17:38:50 |
L2 | S2 | Train Arrival Time | Alighting Time | Tap-out time | |
6 | 633 | 17:58:56 | 17:59:05 | 17:59:59 |
Appendix C. The Table Presents the States of the Trajectory Calculation Results
Date | 2023/3/21 | ||||
PID | 15****36 | ||||
Itinerary index | 234 | ||||
OD pair | Access time(s) | Train ID | Waiting time(s) | Riding time(s) | Egress time(s) |
623-633 | 125 | 1222 | 105 | 1206 | 54 |
References
- Beijing Transport Institute. Beijing Transport Development Annual Report; Beijing Transport Institute: Beijing, China, 2023. [Google Scholar]
- Zhu, Y.; Koutsopoulos, H.N.; Wilson, N.H.M. Passenger itinerary inference model for congested urban rail networks. Transp. Res. Part C Emerg. Technol. 2021, 123, 102896. [Google Scholar] [CrossRef]
- Akhtar, M.; Moridpour, S.; Bazant, M. A Review of Traffic Congestion Prediction Using Artificial Intelligence. J. Adv. Transp. 2021, 2021, 8878011. [Google Scholar] [CrossRef]
- Peftitsi, S.; Jenelius, E.; Cats, O. Modeling the effect of real-time crowding information (RTCI) on passenger distribution in trains. Transp. Res. Part A Policy Pract. 2022, 166, 354–368. [Google Scholar] [CrossRef]
- Mo, B.; Zhao, Z.; Koutsopoulos, H.N.; Zhao, J. Individual Mobility Prediction in Mass Transit Systems Using Smart Card Data: An Interpretable Activity-Based Hidden Markov Approach. IEEE Trans. Intell. Transp. Syst. 2022, 23, 12014–12026. [Google Scholar] [CrossRef]
- Zhou, W.; Han, B.; Feng, C. A review of passenger flow assignment model and algorithm for urban rail transit network. Syst. Eng. Theory Pract. 2017, 37, 440–451. [Google Scholar]
- Su, G.H.; Si, B.F.; Zhao, F.; Li, H. Data-Driven Method for Passenger Path Choice Inference in Congested Subway Network. Complexity 2022, 2022, 5451017. [Google Scholar] [CrossRef]
- Mai, T.; Bui, T.V.; Nguyen, Q.P.; Le, T.V. Estimation of recursive route choice models with incomplete trip observations. Transp. Res. Part B Methodol. 2023, 173, 313–331. [Google Scholar] [CrossRef]
- Wu, L.; Yang, L.; Huang, Z.; Wang, Y.; Chai, Y.; Peng, X.; Liu, Y. Inferring demographics from human trajectories and geographical context. Comput. Environ. Urban Syst. 2019, 77, 101368. [Google Scholar] [CrossRef]
- Zhao, J.J.; Zhang, L.T.; Ye, K.J.; Ye, J.X.; Zhang, J.; Zhang, F.; Xu, C.Z. GLTC: A Metro Passenger Identification Method across AFC Data and Sparse WiFi Data. IEEE Trans. Intell. Transp. Syst. 2022, 23, 18337–18351. [Google Scholar] [CrossRef]
- Li, C.; Xiong, S.; Xiong, H.; Sun, X.; Qin, Y. Logistic model for pattern inference of subway passenger flows based on fare collection and vehicle location data. Appl. Math. Model. 2024, 130, 472–495. [Google Scholar] [CrossRef]
- Xiong, S.; Li, C.; Sun, X.; Qin, Y.; Wu, C.F.J. Statistical estimation in passenger-to-train assignment models based on automated data. Appl. Stoch. Models Bus. Ind. 2021, 38, 287–307. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, X.; Luo, P.; Huang, J.; Huang, J. An unsupervised approach for semantic place annotation of trajectories based on the prior probability. Inf. Sci. 2022, 607, 1311–1327. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wu, N.; Lu, X.X.; Zhao, W.X.; Feng, K. Deep Trajectory Recovery with Fine-Grained Calibration using Kalman Filter. IEEE Trans. Knowl. Data Eng. 2021, 33, 921–934. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, J.; Tian, C.; Xu, C.; Liu, X.; Rao, L. Spatiotemporal Segmentation of Metro Trips Using Smart Card Data. IEEE Trans. Veh. Technol. 2016, 65, 1137–1149. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Wei, H.; Yin, G.; Huang, H.; Li, B.; Huang, C. A Novel Fault-Tolerant Scheme for Multi-Model Ensemble Estimation of Tire Road Friction Coefficient with Missing Measurements. IEEE Trans. Intell. Veh. 2024, 9, 1066–1078. [Google Scholar] [CrossRef]
- Zhao, J.J.; Qu, Q.; Zhang, F.; Xu, C.Z.; Liu, S.Y. Spatio-Temporal Analysis of Passenger Travel Patterns in Massive Smart Card Data. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3135–3146. [Google Scholar] [CrossRef]
- Cheng, Z.; Trépanier, M.; Sun, L. Probabilistic model for destination inference and travel pattern mining from smart card data. Transportation 2020, 48, 2035–2053. [Google Scholar] [CrossRef]
- Shang, P.; Li, R.; Guo, J.; Xian, K.; Zhou, X. Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach. Transp. Res. Part B Methodol. 2019, 121, 135–167. [Google Scholar] [CrossRef]
- Zhu, Y.; Koutsopoulos, H.N.; Wilson, N.H.M. A probabilistic Passenger-to-Train Assignment Model based on automated data. Transp. Res. Part B Methodol. 2017, 104, 522–542. [Google Scholar] [CrossRef]
- Sun, L.J.; Lu, Y.; Jin, J.G.; Lee, D.H.; Axhausen, K.W. An integrated Bayesian approach for passenger flow assignment in metro networks. Transp. Res. Part C Emerg. Technol. 2015, 52, 116–131. [Google Scholar] [CrossRef]
- Zhou, F.; Xu, R.H. Model of Passenger Flow Assignment for Urban Rail Transit Based on Entry and Exit Time Constraints. Transp. Res. Rec. 2012, 2284, 57–61. [Google Scholar] [CrossRef]
- Rahbar, M.; Hickman, M.; Mesbah, M.; Tavassoli, A. Calibrating a Bayesian Transit Assignment Model Using Smart Card Data. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1574–1583. [Google Scholar] [CrossRef]
- Yu, L.; Liu, H.; Fang, Z.; Ye, R.; Huang, Z.; You, Y. A new approach on passenger flow assignment with multi-connected agents. Phys. A Stat. Mech. Its Appl. 2023, 628, 129175. [Google Scholar] [CrossRef]
- Kusakabe, T.; Iryo, T.; Asakura, Y. Estimation method for railway passengers’ train choice behavior with smart card transaction data. Transportation 2010, 37, 731–749. [Google Scholar] [CrossRef]
- Sun, L.; Lee, D.-H.; Erath, A.; Huang, X. Using smart card data to extract passenger’s spatio-temporal density and train’s trajectory of MRT system. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing, China, 12 August 2012; pp. 142–148. [Google Scholar]
- Zhang, Y.-S.; Yao, E.-J. Splitting Travel Time Based on AFC Data: Estimating Walking, Waiting, Transfer, and In-Vehicle Travel Times in Metro System. Discret. Dyn. Nat. Soc. 2015, 2015, 539756. [Google Scholar] [CrossRef]
- Zhang, T.; He, W.; Huang, J.; He, Z.; Li, J. Interactive visual analytics of moving passenger flocks using massive smart card data. Cartogr. Geogr. Inf. Sci. 2022, 49, 354–369. [Google Scholar] [CrossRef]
- Lin, M.; Huang, Z.; Zhao, T.; Zhang, Y.; Wei, H. Spatiotemporal Evolution of Travel Pattern Using Smart Card Data. Sustainability 2022, 14, 9564. [Google Scholar] [CrossRef]
- Cats, O.; Ferranti, F. Unravelling individual mobility temporal patterns using longitudinal smart card data. Res. Transp. Bus. Manag. 2022, 43, 100816. [Google Scholar] [CrossRef]
- Goulet-Langlois, G.; Koutsopoulos, H.N.; Zhao, Z.; Zhao, J. Measuring Regularity of Individual Travel Patterns. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1583–1592. [Google Scholar] [CrossRef]
- Wu, P.; Xu, L.; Li, J.; Guo, H.; Huang, Z. Recognizing Real-Time Transfer Patterns between Metro and Bus Systems Based on Spatial–Temporal Constraints. J. Transp. Eng. Part A Syst. 2022, 148, 04022065. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, E.; Wei, H.; Zheng, K. A constrained multinomial Probit route choice model in the metro network: Formulation, estimation and application. PLoS ONE 2017, 12, e0178789. [Google Scholar] [CrossRef] [PubMed]
- Hussain, E.; Bhaskar, A.; Chung, E. Transit OD matrix estimation using smartcard data: Recent developments and future research challenges. Transp. Res. Part C Emerg. Technol. 2021, 125, 103044. [Google Scholar] [CrossRef]
- Yu, C.; Li, H.; Xu, X.; Liu, J. Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems. Transp. Res. Part E Logist. Transp. Rev. 2020, 142, 102037. [Google Scholar] [CrossRef]
- Wu, J.J.; Qu, Y.C.; Sun, H.J.; Yin, H.D.; Yan, X.Y.; Zhao, J.D. Data-driven model for passenger route choice in urban metro network. Phys. A Stat. Mech. Its Appl. 2019, 524, 787–798. [Google Scholar] [CrossRef]
- Raveau, S.; Muñoz, J.C.; de Grange, L. A topological route choice model for metro. Transp. Res. Part A Policy Pract. 2011, 45, 138–147. [Google Scholar] [CrossRef]
- Raveau, S.; Guo, Z.; Muñoz, J.C.; Wilson, N.H.M. A behavioural comparison of route choice on metro networks: Time, transfers, crowding, topology and socio-demographics. Transp. Res. Part A Policy Pract. 2014, 66, 185–195. [Google Scholar] [CrossRef]
- Fu, Q. Modelling Route Choice Behaviour with Incomplete Data: An Application to the London Underground. Ph.D. Thesis, The University of Leeds, Leeds, UK, 2014. [Google Scholar]
- Chen, X.; Cheng, Z.; Jin, J.G.; Trépanier, M.; Sun, L. Probabilistic Forecasting of Bus Travel Time with a Bayesian Gaussian Mixture Model. Transp. Sci. 2023, 57, 1516–1535. [Google Scholar] [CrossRef]
- Qu, H.; Xu, X.; Chien, S. Estimating Wait Time and Passenger Load in a Saturated Metro Network: A Data-Driven Approach. J. Adv. Transp. 2020, 2020, 4271871. [Google Scholar] [CrossRef]
- Zhu, Y.; Koutsopoulos, H.N.; Wilson, N.H.M. Inferring left behind passengers in congested metro systems from automated data. Transp. Res. Part C Emerg. Technol. 2018, 94, 323–337. [Google Scholar] [CrossRef]
- Tuncel, K.S.; Koutsopoulos, H.N.; Ma, Z. An Unsupervised Learning Approach for Robust Denied Boarding Probability Estimation Using Smart Card and Operation Data in Urban Railways. IEEE Intell. Transp. Syst. Mag. 2023, 15, 19–32. [Google Scholar] [CrossRef]
- Li, X.; Zhong, Z.; Wu, J.; Yang, Y.; Lin, Z.; Liu, H. Expectation-Maximization Attention Networks for Semantic Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Luo, Q.; Lin, B.; Lyu, Y.; He, Y.; Zhang, X.; Zhang, Z. Spatiotemporal path inference model for urban rail transit passengers based on travel time data. IET Intell. Transp. Syst. 2023, 17, 1395–1414. [Google Scholar] [CrossRef]
Dataset | Methods | ||||||
---|---|---|---|---|---|---|---|
D1: TTYB-DD | LTRM | 1.00 × 100 1 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 |
PTAM-MLE | 9.46 × 10−1 | 8.38 × 10−1 | 8.72 × 10−1 | 8.57 × 10−1 | 8.57 × 10−1 | 8.57 × 10−1 | |
MPTAM-EM | 5.95 × 10−1 | 6.25 × 10−1 | 6.01 × 10−1 | 8.57 × 10−1 | 8.57 × 10−1 | 8.57 × 10−1 | |
STPGM-AEM | 9.62 × 10−1 1 | 8.88 × 10−1 | 9.16 × 10−1 | 9.05 × 10−1 | 9.05 × 10−1 | 9.05 × 10−1 | |
STPGM-EMA | 9.58 × 10−1 | 9.38 × 10−1 | 9.42 × 10−1 | 9.52 × 10−1 | 9.52 × 10−1 | 9.52 × 10−1 | |
STPGM-AEMA(ours) | 9.58 × 10−1 | 9.38 × 10−1 | 9.42 × 10−1 | 9.52 × 10−1 | 9.52 × 10−1 | 9.52 × 10−1 | |
D2: CY-DS | LTRM | 2.40 × 10−1 | 9.17 × 10−2 | 9.44 × 10−2 | 1.05 × 10−1 | 1.05 × 10−1 | 1.05 × 10−1 |
PTAM-MLE | 5.13 × 10−1 | 5.14 × 10−1 | 5.12 × 10−1 | 4.74 × 10−1 | 4.74 × 10−1 | 4.74 × 10−1 | |
MPTAM-EM | 1.98 × 10−1 | 9.38 × 10−2 | 1.22 × 10−1 | 1.58 × 10−1 | 1.58 × 10−1 | 1.58 × 10−1 | |
STPGM-AEM | 5.60 × 10−1 | 4.79 × 10−1 | 5.10 × 10−1 | 6.32 × 10−1 | 6.32 × 10−1 | 6.32 × 10−1 | |
STPGM-EMA | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | |
STPGM-AEMA(ours) | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | |
D3: PHY-TTYB | LTRM | 8.33 × 10−1 | 9.76 × 10−1 | 8.77 × 10−1 | 9.50 × 10−1 | 9.50 × 10−1 | 9.50 × 10−1 |
PTAM-MLE | 7.56 × 10−1 | 8.00 × 10−1 | 6.79 × 10−1 | 8.50 × 10−1 | 8.50 × 10−1 | 8.50 × 10−1 | |
MPTAM-EM | 8.33 × 10−1 | 9.33 × 10−1 | 8.52 × 10−1 | 9.50 × 10−1 | 9.50 × 10−1 | 9.50 × 10−1 | |
STPGM-AEM | 7.71 × 10−1 | 7.76 × 10−1 | 7.02 × 10−1 | 8.00 × 10−1 | 8.00 × 10−1 | 8.00 × 10−1 | |
STPGM-EMA | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | |
STPGM-AEMA(ours) | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | |
D4: HJL-CY | LTRM | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 | 1.00 × 100 |
PTAM-MLE | 8.56 × 10−1 | 6.83 × 10−1 | 6.90 × 10−1 | 7.89 × 10−1 | 7.89 × 10−1 | 7.89 × 10−1 | |
MPTAM-EM | 9.05 × 10−1 | 8.83 × 10−1 | 8.79 × 10−1 | 8.95 × 10−1 | 8.95 × 10−1 | 8.95 × 10−1 | |
STPGM-AEM | 9.05 × 10−1 | 7.17 × 10−1 | 7.54 × 10−1 | 7.89 × 10−1 | 7.89 × 10−1 | 7.89 × 10−1 | |
STPGM-EMA | 9.67 × 10−1 | 9.33 × 10−1 | 9.45 × 10−1 | 9.44 × 10−1 | 9.44 × 10−1 | 9.44 × 10−1 | |
STPGM-AEMA(ours) | 9.67 × 10−1 | 9.33 × 10−1 | 9.45 × 10−1 | 9.44 × 10−1 | 9.44 × 10−1 | 9.44 × 10−1 | |
Average | LTRM | 7.54 × 10−1 | 7.59 × 10−1 | 7.31 × 10−1 | 7.51 × 10−1 | 7.51 × 10−1 | 7.51 × 10−1 |
PTAM-MLE | 7.68 × 10−1 | 7.09 × 10−1 | 6.88 × 10−1 | 7.43 × 10−1 | 7.43 × 10−1 | 7.43 × 10−1 | |
MPTAM-EM | 6.33 × 10−1 | 6.34 × 10−1 | 6.14 × 10−1 | 7.15 × 10−1 | 7.15 × 10−1 | 7.15 × 10−1 | |
STPGM-AEM | 7.99 × 10−1 | 7.15 × 10−1 | 7.20 × 10−1 | 7.81 × 10−1 | 7.81 × 10−1 | 7.81 × 10−1 | |
STPGM-EMA | 9.81 × 10−1 | 9.68 × 10−1 | 9.72 × 10−1 | 9.74 × 10−1 | 9.74 × 10−1 | 9.74 × 10−1 | |
STPGM-AEMA(ours) | 9.81 × 10−1 | 9.68 × 10−1 | 9.72 × 10−1 | 9.74 × 10−1 | 9.74 × 10−1 | 9.74 × 10−1 |
Method | D1: TTYB-DD | D2: CY-DS | D3: PHY-TTYB | D4: HJL-CY | Average |
---|---|---|---|---|---|
LTRM | 1.00 × 100 | −1.45 × 10−1 | 8.95 × 10−1 | 1.00 × 100 | 6.87 × 10−1 |
PTAM-MLE | 7.57 × 10−1 | 1.52 × 10−1 | 6.61 × 10−1 | 6.24 × 10−1 | 5.48 × 10−1 |
MPTAM-EM | 7.69 × 10−1 | −1.65 × 10−1 | 8.90 × 10−1 | 8.30 × 10−1 | 5.81 × 10−1 |
STPGM-AEM | 8.42 × 10−1 | 4.14 × 10−1 | 5.12 × 10−1 | 6.18 × 10−1 | 5.96 × 10−1 |
STPGM-EMA | 9.24 × 10−1 | 1.00 × 100 | 1.00 × 100 | 9.09 × 10−1 | 9.58 × 10−1 |
STPGM-AEMA(ours) | 9.24 × 10−1 | 1.00 × 100 | 1.00 × 100 | 9.09 × 10−1 | 9.58 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Guo, J.; Qin, Y.; Zheng, X.; Xiong, S.; He, J.; Sun, Q.; Jia, L. A Spatiotemporal Probabilistic Graphical Model Based on Adaptive Expectation-Maximization Attention for Individual Trajectory Reconstruction Considering Incomplete Observations. Entropy 2024, 26, 388. https://doi.org/10.3390/e26050388
Sun X, Guo J, Qin Y, Zheng X, Xiong S, He J, Sun Q, Jia L. A Spatiotemporal Probabilistic Graphical Model Based on Adaptive Expectation-Maximization Attention for Individual Trajectory Reconstruction Considering Incomplete Observations. Entropy. 2024; 26(5):388. https://doi.org/10.3390/e26050388
Chicago/Turabian StyleSun, Xuan, Jianyuan Guo, Yong Qin, Xuanchuan Zheng, Shifeng Xiong, Jie He, Qi Sun, and Limin Jia. 2024. "A Spatiotemporal Probabilistic Graphical Model Based on Adaptive Expectation-Maximization Attention for Individual Trajectory Reconstruction Considering Incomplete Observations" Entropy 26, no. 5: 388. https://doi.org/10.3390/e26050388
APA StyleSun, X., Guo, J., Qin, Y., Zheng, X., Xiong, S., He, J., Sun, Q., & Jia, L. (2024). A Spatiotemporal Probabilistic Graphical Model Based on Adaptive Expectation-Maximization Attention for Individual Trajectory Reconstruction Considering Incomplete Observations. Entropy, 26(5), 388. https://doi.org/10.3390/e26050388