Design and Implementation of a Hydroponic Strawberry Monitoring and Harvesting Timing Information Supporting System Based on Nano AI-Cloud and IoT-Edge
Abstract
:1. Introduction
2. Related Works
3. Hydroponic Strawberry Monitoring and Harvest Decision System
3.1. System Overview and Device Components
3.1.1. Hydroponics System
3.1.2. Hydroponic Strawberry Monitoring IoT-Edge Device
3.1.3. GPU Workstation
3.2. System Module Architecture
3.2.1. Monitoring IoT-Edge Module
3.2.2. Analysis Station Module
3.2.3. Data Handling of Analysis Server
4. Operational Use Case and Test
4.1. Database Server for Monitoring Data
4.2. Image Storage Server for Analysis Data
4.3. Analysis Server for Strawberry Harvest Determination and NDVI Calculation
4.4. Visualization Server for Strawberry Monitoring and Harvest Decision
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Strawberry Market Size. Available online: https://www.thecowboychannel.com/story/43599204/fresh-strawberry-market-2021-is-estimated-to-clock-a-modest-cagr-of-34nbspduring-the-forecast-period-2021-2026-with-top-countries-data (accessed on 4 May 2021).
- Worldwide Strawberry Production. Available online: https://www.hortidaily.com/article/9252391/global-strawberry-production-up-by-almost-40/ (accessed on 4 May 2021).
- Han, J.S.; Hong, Y.J.; Kim, J.W. Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters. IEEE Access 2020, 8, 192543–192556. [Google Scholar] [CrossRef]
- Han, J.S.; Park, S.; Kim, J.W. Dynamic OverCloud: Realizing Microservices-Based IoT-Cloud Service Composition over Multiple Cloud. Electronics 2020, 9, 969. [Google Scholar] [CrossRef]
- Bharti, N.K.; Dongargaonkar, M.D.; Kudkar, I.B.; Das, S.; Kenia, M. Hydroponics System for Soilless Farming Integrated with Android Application by Internet of Things and MQTT Broker. In Proceedings of the 2019 IEEE Pune Section International Conference (PuneCon), Pune, India, 18–20 December 2019. [Google Scholar]
- Joshitha, C.; Kanakaraja, P.; Kumar, K.S.; Akanksha, P.; Satish, G. An eye on hydroponics: The IoT initiative. In Proceedings of the 7th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 11–13 February 2021. [Google Scholar]
- Herman; Surantha, N. Intelligent Monitoring and Controlling System for Hydroponics Precision Agriculture. In Proceedings of the 7th International Conference on Information and Communication Technology (ICoICT), Kuala Lumpur, Malaysia, 24–26 July 2019. [Google Scholar]
- Fakhrurroja, H.; Mardhotillah, S.A.; Mahendra, O.; Munandar, A.; Rizqyawan, M.I.; Pratama, R.P. Automatic pH and Humidity Control System for Hydroponics Using Fuzzy Logic. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019. [Google Scholar]
- Verma, M.S.; Gawade, S.D. A machine learning approach for prediction system and analysis of nutrients uptake for better crop growth in the Hydroponics system. In Proceedings of the International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021. [Google Scholar]
- Pawar, S.; Tembe, S.; Acharekar, R.; Khan, S.; Yadav, S. Design of an IoT enabled Automated Hydroponics system using NodeMCU and Blynk. In Proceedings of the IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019. [Google Scholar]
- Issarny, V.; Billet, B.; Bouloukakis, G.; Florescu, D.; Toma, C. LATTICE: A Framework for Optimizing IoT System Configurations at the Edge. In Proceedings of the IEEE 39th International Conference on Distributed Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019. [Google Scholar]
- Samijayani, O.N.; Darwis, R.; Rahmatia, S.; Mujadin, A.; Astharini, D. Hybrid ZigBee and WiFi Wireless Sensor Networks for Hydroponic Monitoring. In Proceedings of the International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020. [Google Scholar]
- Adidrana, D.; Surantha, N. Hydroponic Nutrient Control System based on Internet of Things and K-Nearest Neighbors. In Proceedings of the International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Tangerang, Indonesia, 23–24 October 2019. [Google Scholar]
- Ge, Y.; Xiong, Y.; Tenorio, G.L.; From, P.J. Fruit Localization and Environment Perception for Strawberry Harvesting Robots. IEEE Access 2019, 7, 147642–147652. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Liu, H.; Yang, L.; Zhang, D. Real-Time Visual Localization of the Picking Points for a Ridge-Planting Strawberry Harvesting Robot. IEEE Access 2020, 8, 116556–116568. [Google Scholar] [CrossRef]
- Feng, Q.; Chen, J.; Zhang, M.; Wang, X. Design and Test of Harvesting Robot for Table-top Cultivated Strawberry. In Proceedings of the WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 21–22 August 2019. [Google Scholar]
- Huang, Y.P.; Wang, T.W.; Basanta, H. Using Fuzzy Mask R-CNN Model to Automatically Identify Tomato Ripeness. IEEE Access 2020, 8, 207672–207682. [Google Scholar] [CrossRef]
- Altaheri, H.; Alsulaiman, M.; Muhammad, G. Date Fruit Classification for Robotic Harvesting in a Natural Environment Using Deep Learning. IEEE Access 2019, 7, 117115–117133. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, J.; Gui, G.; Hao, X.; Gao, W.; Wang, M. Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot. IEEE Access 2018, 6, 67940–67950. [Google Scholar] [CrossRef]
- Nandi, C.S.; Tudu, B.; Koley, C. A Machine Vision Technique for Grading of Harvested Mangoes Based on Maturity and Quality. IEEE Sens. J. 2016, 16, 6387–6396. [Google Scholar] [CrossRef]
- Saputro, A.H.; Juansyah, S.D.; Handayani, W. Banana (Musa sp.) maturity prediction system based on chlorophyll content using visible-NIR imaging. In Proceedings of the 2018 International Conference on Signals and Systems (ICSigSys), Bali, Indonesia, 1–3 May 2018. [Google Scholar]
- Kuang, Y.C.; Lee, S.; Michael, J.C.; Melanie, P.O. Evaluation of Deep Neural Network and Alternating Decision Tree for Kiwifruit Detection. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019. [Google Scholar]
- Hong, S.J.; Eum, H.L. Determination of the Harvest Date and Ripening Phase of ‘Seolhyang’ Strawberry. J. Biol. Environ. Control 2020, 27, 62–72. [Google Scholar] [CrossRef]
- Multi_Camera_Adapter_V2.2_Python Example Code. Available online: https://github.com/ArduCAM/RaspberryPi/tree/master/Multi_Camera_Adapter/Multi_Adapter_Board_4Channel/Multi_Camera_Adapter_V2.2_python (accessed on 14 April 2021).
- LXD. Available online: https://linuxcontainers.org/lxd/introduction (accessed on 16 April 2021).
- Storage Management in LXD. Available online: https://ubuntu.com/blog/storage-management-in-lxd-2–15 (accessed on 27 April 2021).
- Ext4. Available online: https://en.wikipedia.org/wiki/Ext4 (accessed on 27 April 2021).
- Normalized Difference Vegetation Index. Available online: https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index (accessed on 27 April 2021).
- YOLO. Available online: https://github.com/AlexeyAB/darknet (accessed on 27 April 2021).
- Lu, Y.; Zhang, L.; Xie, W. YOLO-compact: An Efficient YOLO Network for Single Category Real-Time Object Detection. In Proceedings of the Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020. [Google Scholar]
- Yolo Mark. Available online: https://github.com/AlexeyAB/Yolo_mark (accessed on 27 April 2021).
- MAPIR Camera. Available online: https://www.mapir.camera/collections/survey3 (accessed on 2 May 2021).
- Smart Berry Farm. Available online: https://m.blog.naver.com/damyanggun/221849916199 (accessed on 1 May 2021).
Component | Hardware Specification |
---|---|
Raspberry Pi (Figure 1(1)) |
|
Arduino (Figure 1(2)) |
|
Sensors (Figure 1(3)) |
|
Cameras (Figure 1(4)) |
|
Power supply (Figure 1(5)) |
|
Component | Hardware Specification |
---|---|
CPU |
|
RAM |
|
SSD |
|
Main board |
|
GPU |
|
Field | Type | Null | Key | Default | Extra |
---|---|---|---|---|---|
id | bigint (20) | NO | PRI | NULL | auto_increment |
time_sec | timestamp | NO | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP | |
sensor | int (11) | YES | NULL | ||
temperature | float | YES | NULL | ||
pressure | float | YES | NULL | ||
altitude | float | YES | NULL | ||
humidity | float | YES | NULL | ||
lux | float | YES | NULL | ||
uv | float | YES | NULL | ||
co2 | float | YES | NULL | ||
co2status | char (2) | YES | NULL | ||
wtemperature | float | YES | NULL | ||
ph | float | YES | NULL | ||
do | float | YES | NULL | ||
ec | float | YES | NULL | ||
tds | float | YES | NULL |
Category | Label | 0 | 1 | 2 | 3 | 4 | 5 | Sum |
---|---|---|---|---|---|---|---|---|
Meaning | Immature | 30% Mature | 50% Mature | 60% Mature | 80% Mature | Mature | ||
Harvest after 1 Month | Harvest after 3 Weeks | Harvest after 2 Weeks | Harvest after 1 Week | Harvest after 3 Days | Harvest after 1 Day | |||
Number of images | 1005 | 1012 | 1017 | 1043 | 1038 | 1042 | 6156 |
Id | time_sec | Sensor | Temperature | Pressure | Altitude | Humidity | lux | uv | CO2 | CO2 Status | Wtemperature | ph | do | ec | tds |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93263 | 2020-08-26 13:55 | 1 | 30.97 | 992.31 | 175.8 | 28.43 | 357.5 | 0.16 | 515 | NR | 32.75 | 7.3 | 2.16 | 0.01 | 943.76 |
93264 | 2020-08-26 13:57 | 1 | 31.23 | 991.94 | 178.97 | 30.29 | 189.17 | 0.12 | 500 | NR | 32.44 | 7.31 | 2.13 | 0.01 | 943.76 |
93265 | 2020-08-26 13:59 | 1 | 31.24 | 991.98 | 178.63 | 30.33 | 197.5 | 0.12 | 497 | NR | 32.44 | 7.31 | 2.1 | 0.01 | 943.76 |
93266 | 2020-08-26 14:00 | 1 | 31.24 | 991.99 | 178.51 | 30.31 | 199.17 | 0.12 | 495 | NR | 32.44 | 7.31 | 2.07 | 0.01 | 943.76 |
93267 | 2020-08-26 14:00 | 1 | 31.22 | 992 | 178.42 | 30.22 | 200.83 | 0.16 | 495 | NR | 32.44 | 7.31 | 2.04 | 0.01 | 943.76 |
93268 | 2020-08-26 14:01 | 1 | 31.22 | 991.97 | 178.73 | 30.28 | 190 | 0.12 | 509 | NR | 32.44 | 7.31 | 2.02 | 0.01 | 943.76 |
93269 | 2020-08-26 14:03 | 1 | 31.17 | 992.01 | 178.39 | 30.48 | 203.33 | 0.12 | 508 | NR | 32.44 | 7.31 | 2.07 | 0.01 | 943.76 |
93270 | 2020-08-26 14:05 | 1 | 31.19 | 991.96 | 178.76 | 30.38 | 199.17 | 0.12 | 510 | NR | 32.44 | 7.31 | 2.05 | 0.01 | 943.76 |
93271 | 2020-08-26 14:05 | 1 | 31.2 | 991.99 | 178.54 | 30.38 | 197.5 | 0.12 | 510 | NR | 32.44 | 7.31 | 2.04 | 0.01 | 943.76 |
93272 | 2020-08-26 14:06 | 1 | 31.19 | 991.96 | 178.76 | 30.38 | 195 | 0.12 | 510 | NR | 32.44 | 7.31 | 2.05 | 0.01 | 943.76 |
93273 | 2020-08-26 14:06 | 1 | 31.21 | 991.99 | 178.55 | 30.43 | 191.67 | 0.12 | 508 | NR | 32.44 | 7.31 | 2.06 | 0.01 | 943.76 |
93274 | 2020-08-26 14:08 | 1 | 31.06 | 991.97 | 178.69 | 30.03 | 187.5 | 0.12 | 510 | NR | 32.44 | 7.31 | 2.03 | 0.01 | 943.76 |
93275 | 2020-08-26 14:10 | 1 | 30.92 | 991.92 | 179.13 | 30.31 | 183.33 | 0.12 | 495 | NR | 32.44 | 7.31 | 2.05 | 0.01 | 943.76 |
93276 | 2020-08-26 14:11 | 1 | 30.88 | 991.94 | 178.95 | 30.1 | 183.33 | 0.16 | 496 | NR | 32.44 | 7.31 | 2.14 | 0.01 | 943.76 |
93277 | 2020-08-26 14:11 | 1 | 30.85 | 992 | 178.41 | 30.46 | 184.17 | 0.12 | 498 | NR | 32.44 | 7.31 | 2.08 | 0.01 | 943.76 |
93278 | 2020-08-26 14:12 | 1 | 30.81 | 991.99 | 178.53 | 30.58 | 185 | 0.16 | 500 | NR | 32.44 | 7.31 | 2.03 | 0.01 | 943.76 |
93279 | 2020-08-26 14:14 | 1 | 30.88 | 991.91 | 179.24 | 30.88 | 193.33 | 0.13 | 499 | NR | 32.44 | 7.31 | 2.12 | 0.01 | 943.76 |
93280 | 2020-08-26 14:16 | 1 | 30.93 | 991.93 | 179.04 | 30.32 | 210.83 | 0.12 | 511 | NR | 32.44 | 7.31 | 2.05 | 0.01 | 943.76 |
93281 | 2020-08-26 14:16 | 1 | 30.96 | 991.91 | 179.24 | 30.75 | 216.67 | 0.16 | 511 | NR | 32.44 | 7.31 | 2.1 | 0.01 | 943.76 |
93282 | 2020-08-26 14:17 | 1 | 30.96 | 991.9 | 179.27 | 30.59 | 223.33 | 0.12 | 511 | NR | 32.44 | 7.31 | 2.13 | 0.01 | 943.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kim, J. Design and Implementation of a Hydroponic Strawberry Monitoring and Harvesting Timing Information Supporting System Based on Nano AI-Cloud and IoT-Edge. Electronics 2021, 10, 1400. https://doi.org/10.3390/electronics10121400
Park S, Kim J. Design and Implementation of a Hydroponic Strawberry Monitoring and Harvesting Timing Information Supporting System Based on Nano AI-Cloud and IoT-Edge. Electronics. 2021; 10(12):1400. https://doi.org/10.3390/electronics10121400
Chicago/Turabian StylePark, Sun, and JongWon Kim. 2021. "Design and Implementation of a Hydroponic Strawberry Monitoring and Harvesting Timing Information Supporting System Based on Nano AI-Cloud and IoT-Edge" Electronics 10, no. 12: 1400. https://doi.org/10.3390/electronics10121400
APA StylePark, S., & Kim, J. (2021). Design and Implementation of a Hydroponic Strawberry Monitoring and Harvesting Timing Information Supporting System Based on Nano AI-Cloud and IoT-Edge. Electronics, 10(12), 1400. https://doi.org/10.3390/electronics10121400