A Cost-Effective Air Quality Supervision Solution for Enhanced Living Environments through the Internet of Things
Abstract
:1. Introduction
2. IAQ Monitored Pollution Sources and their Effects on Health
3. Materials and Methods
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Ageing: 1950–2050; Department of Economic and Social Affairs, Population Division, United Nations: New York, NY, USA, 2002; pp. 11–13. ISBN 92-1-051092-5. [Google Scholar]
- Centers for Disease Control and Prevention. The State of Aging and Health in America 2007. N. A. on an Aging Society; 2007. Available online: https://www.cdc.gov/aging/pdf/saha_2007.pdf (accessed on 20 December 2019).
- Manogaran, G.; Chilamkurti, N.; Hsu, C.-H. Emerging trends, issues, and challenges in Internet of Medical Things and wireless networks. Pers. Ubiquitous Comput. 2018, 22, 879–882. [Google Scholar] [CrossRef]
- Manogaran, G.; Varatharajan, R.; Lopez, D.; Kumar, P.M.; Sundarasekar, R.; Thota, C. A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Gener. Comput. Syst. 2018, 82, 375–387. [Google Scholar] [CrossRef]
- Rathore, M.M.; Paul, A.; Ahmad, A.; Chilamkurti, N.; Hong, W.-H.; Seo, H. Real-time secure communication for Smart City in high-speed Big Data environment. Future Gener. Comput. Syst. 2018, 83, 638–652. [Google Scholar] [CrossRef]
- Jo, D.; Kim, G.J. ARIoT: Scalable augmented reality framework for interacting with Internet of Things appliances everywhere. IEEE Trans. Consum. Electron. 2016, 62, 334–340. [Google Scholar] [CrossRef]
- Koleva, P.; Tonchev, K.; Balabanov, G.; Manolova, A.; Poulkov, V. Challenges in designing and implementation of an effective Ambient Assisted Living system. In Proceedings of the 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Serbia, Niš, 14–17 October 2015; pp. 305–308. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Masse, R.A.C.; Ochoa-Zezzatti, A.; García, V.; Mejía, J.; Gonzalez, S. Saul Gonzalez Application of IoT with haptics interface in the smart manufacturing industry. Int. J. Comb. Optim. Probl. Inform. 2018, 10, 54–70. [Google Scholar]
- Marques, G. Ambient Assisted Living and Internet of Things. In Harnessing the Internet of Everything (IoE) for Accelerated Innovation Opportunities; Cardoso, P.J.S., Monteiro, J., Semião, J., Rodrigues, J.M.F., Eds.; IGI Global: Hershey, PA, USA, 2019; pp. 100–115. ISBN 978-1-5225-7332-6. [Google Scholar]
- Whitmore, A.; Agarwal, A.; Da Xu, L. The Internet of Things—A survey of topics and trends. Inf. Syst. Front. 2015, 17, 261–274. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Manogaran, G.; Mohamed, M. Internet of Things (IoT) and its impact on supply chain: A framework for building smart, secure and efficient systems. Future Gener. Comput. Syst. 2018, 86, 614–628. [Google Scholar] [CrossRef]
- Hong, S.; Kim, Y.; Kim, G.J. Developing Usable Interface for Internet of Things (IoT) Security Analysis Software. In Human Aspects of Information Security, Privacy and Trust; Tryfonas, T., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10292, pp. 322–328. ISBN 978-3-319-58459-1. [Google Scholar]
- Diro, A.A.; Chilamkurti, N. Distributed attack detection scheme using deep learning approach for Internet of Things. Future Gener. Comput. Syst. 2018, 82, 761–768. [Google Scholar] [CrossRef]
- Hsu, C.-H. Internet of People and situated computing. Pers. Ubiquitous Comput. 2016, 20, 847–849. [Google Scholar] [CrossRef]
- Zhou, Z.; Feng, J.; Tan, L.; He, Y.; Gong, J. An Air-Ground Integration Approach for Mobile Edge Computing in IoT. IEEE Commun. Mag. 2018, 56, 40–47. [Google Scholar] [CrossRef]
- Walsh, P.J.; Dudney, C.S.; Copenhaver, E.D. Indoor Air Quality; CRC Press: Boca Raton, FL, USA, 1983; ISBN 0-8493-5015-8. [Google Scholar]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Wei, S.; Ning, F.; Simon, F.; Kyungeun, C. A Deep Belief Network for Electricity Utilisation Feature Analysis of Air Conditioners Using a Smart IoT Platform. J. Inf. Process. Syst. 2018, 14, 162–175. [Google Scholar]
- Pitarma, R.; Marques, G.; Ferreira, B.R. Monitoring Indoor Air Quality for Enhanced Occupational Health. J. Med Syst. 2017, 41, 23. [Google Scholar] [CrossRef] [PubMed]
- Marques, G.; Pitarma, R. Health informatics for indoor air quality monitoring. In Proceedings of the 2016 11th Iberian Conference on Information Systems and Technologies (CISTI), Gran Canaria, Spain, 15–18 June 2016; AISTI: Rio Tinto, Portugal, 2016; pp. 1–6. [Google Scholar]
- Pitarma, R.; Marques, G.; Caetano, F. Monitoring Indoor Air Quality to Improve Occupational Health. In New Advances in Information Systems and Technologies; Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Mendonça Teixeira, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 445, pp. 13–21. ISBN 978-3-319-31306-1. [Google Scholar]
- Marques, G.; Pitarma, R. Smartphone Application for Enhanced Indoor Health Environments. J. Inf. Syst. Eng. Manag. 2016, 4, 9. [Google Scholar]
- Marques, G.; Pitarma, R. Monitoring Health Factors in Indoor Living Environments Using Internet of Things. In Recent Advances in Information Systems and Technologies; Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 570, pp. 785–794. ISBN 978-3-319-56537-8. [Google Scholar]
- Marques, G.; Pitarma, R. Monitoring and control of the indoor environment. In Proceedings of the 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), Lisbon, Portugal, 21–24 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Feria, F.; Salcedo Parra, O.J.; Reyes Daza, B.S. Design of an Architecture for Medical Applications in IoT. In Cooperative Design, Visualization, and Engineering; Luo, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 9929, pp. 263–270. ISBN 978-3-319-46770-2. [Google Scholar]
- Ray, P.P. Internet of things for smart agriculture: Technologies, practices and future direction. J. Ambient Intell. Smart Environ. 2017, 9, 395–420. [Google Scholar] [CrossRef]
- Matz, J.R.; Wylie, S.; Kriesky, J. Participatory Air Monitoring in the Midst of Uncertainty: Residents’ Experiences with the Speck Sensor. Engag. Sci. Technol. Soc. 2017, 3, 464–498. [Google Scholar] [CrossRef]
- Demuth, D.; Nuest, D.; Bröring, A.; Pebesma, E. The AirQuality SenseBox. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013; Volume 15. [Google Scholar]
- Marques, G.; Pitarma, R. An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health 2016, 13, 1152. [Google Scholar] [CrossRef]
- Salonen, H.J.; Pasanen, A.-L.; Lappalainen, S.K.; Riuttala, H.M.; Tuomi, T.M.; Pasanen, P.O.; Bäck, B.C.; Reijula, K.E. Airborne Concentrations of Volatile Organic Compounds, Formaldehyde and Ammonia in Finnish Office Buildings with Suspected Indoor Air Problems. J. Occup. Environ. Hyg. 2009, 6, 200–209. [Google Scholar] [CrossRef]
- Felix, E.P.; Cardoso, A.A. A method for determination of ammonia in air using oxalic acid-impregnated cellulose filters and fluorimetric detection. J. Braz. Chem. Soc. 2012, 23, 142–147. [Google Scholar] [CrossRef]
- Mostafa, E.; Hoelscher, R.; Diekmann, B.; Ghaly, A.E.; Buescher, W. Evaluation of two indoor air pollution abatement techniques in forced-ventilation fattening pig barns. Atmos. Pollut. Res. 2017, 8, 428–438. [Google Scholar] [CrossRef]
- Tuomainen, M.; Tuomainen, A.; Liesivuori, J.; Pasanen, A.-L. The 3-year follow-up study in a block of flats - experiences in the use of the Finnish indoor climate classification. Indoor Air 2003, 13, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, T. A case of indoor air pollution of ammonia emitted from concrete in a newly built office in Beijing. Build. Environ. 2010, 45, 596–600. [Google Scholar] [CrossRef]
- Jarnstrom, H.; Saarela, K.; Kalliokoski, P.; Pasanen, A. Reference values for indoor air pollutant concentrations in new, residential buildings in Finland. Atmos. Environ. 2006, 40, 7178–7191. [Google Scholar] [CrossRef]
- Bull, K.; Sutton, M. Critical loads and the relevance of ammonia to an effects-based nitrogen protocol. Atmos. Environ. 1998, 32, 565–572. [Google Scholar] [CrossRef]
- Webb, J.; Menzi, H.; Pain, B.F.; Misselbrook, T.H.; Dämmgen, U.; Hendriks, H.; Döhler, H. Managing ammonia emissions from livestock production in Europe. Environ. Pollut. 2005, 135, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Saha, C.K.; Zhang, G.; Kai, P.; Bjerg, B. Effects of a partial pit ventilation system on indoor air quality and ammonia emission from a fattening pig room. Biosyst. Eng. 2010, 105, 279–287. [Google Scholar] [CrossRef]
- Ernst, A.; Zibrak, J.D. Carbon Monoxide Poisoning. N. Engl. J. Med. 1998, 339, 1603–1608. [Google Scholar] [CrossRef]
- Clardy, P.F.; Manaker, S.; Perry, H. Carbon monoxide poisoning. UpToDate. Literature review current through: Apr 2017.
- Haines, D. Carbon monoxide poisoning. Med. -Leg. J. 2016, 84, 59. [Google Scholar] [CrossRef]
- Weaver, L.K. Carbon Monoxide Poisoning. N. Engl. J. Med. 2009, 360, 1217–1225. [Google Scholar] [CrossRef]
- Blumenthal, I. Carbon Monoxide Poisoning. J. R. Soc. Med. 2001, 94, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Frampton, M.W.; Morrow, P.E.; Cox, C.; Gibb, F.R.; Speers, D.M.; Utell, M.J. Effects of Nitrogen Dioxide Exposure on Pulmonary function and Airway Reactivity in Normal Humans. Am. Rev. Respir. Dis. 1991, 143, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Strand, V.; Rak, S.; Svartengren, M.; Bylin, G. Nitrogen dioxide exposure enhances asthmatic reaction to inhaled allergen in subjects with asthma. Am. J. Respir. Crit. Care Med. 1997, 155, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Mills, I.C.; Atkinson, R.W.; Kang, S.; Walton, H.; Anderson, H.R. Quantitative systematic review of the associations between short-term exposure to nitrogen dioxide and mortality and hospital admissions. BMJ Open 2015, 5, e006946. [Google Scholar] [CrossRef] [PubMed]
- Folinsbee, L.J. Does nitrogen dioxide exposure increase airways responsiveness? Toxicol. Ind. Health 1992, 8, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Belanger, K.; Gent, J.F.; Triche, E.W.; Bracken, M.B.; Leaderer, B.P. Association of Indoor Nitrogen Dioxide Exposure with Respiratory Symptoms in Children with Asthma. Am. J. Respir. Crit. Care Med. 2006, 173, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Pilotto, L.; Douglas, R.; Attewell, R.; Wilson, S. Respiratory effects associated with indoor nitrogen dioxide exposure in children. Int. J. Epidemiol. 1997, 26, 788–796. [Google Scholar] [CrossRef]
- Favarato, G.; Anderson, H.R.; Atkinson, R.; Fuller, G.; Mills, I.; Walton, H. Traffic-related pollution and asthma prevalence in children. Quantification of associations with nitrogen dioxide. Air Qual. Atmos. Health 2014, 7, 459–466. [Google Scholar] [CrossRef]
- Hamra, G.B.; Laden, F.; Cohen, A.J.; Raaschou-Nielsen, O.; Brauer, M.; Loomis, D. Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2015, 123, 1107–1112. [Google Scholar] [CrossRef]
- Amegah, A.K.; Jaakkola, J.J. Household air pollution and the sustainable development goals. Bull. World Health Organ. 2016, 94, 215–221. [Google Scholar] [CrossRef]
- Lee, S.C.; Li, W.-M.; Ao, C.-H. Investigation of indoor air quality at residential homes in Hong Kong—Case study. Atmos. Environ. 2002, 36, 225–237. [Google Scholar] [CrossRef]
- Kandpal, J.B.; Maheshwari, R.C.; Kandpal, T.C. Indoor air pollution from domestic cookstoves using coal, kerosene and LPG. Energy Convers. Manag. 1995, 36, 1067–1072. [Google Scholar] [CrossRef]
- Cardiopulmonary Outcomes and Household Air Pollution Trial (CHAP) Trial Investigators; Fandiño-Del-Rio, M.; Goodman, D.; Kephart, J.L.; Miele, C.H.; Williams, K.N.; Moazzami, M.; Fung, E.C.; Koehler, K.; Davila-Roman, V.G.; et al. Effects of a liquefied petroleum gas stove intervention on pollutant exposure and adult cardiopulmonary outcomes (CHAP): Study protocol for a randomized controlled trial. Trials 2017, 18, 518. [Google Scholar]
- Anenberg, S.C.; Schwartz, J.; Shindell, D.; Amann, M.; Faluvegi, G.; Klimont, Z.; Janssens-Maenhout, G.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; et al. Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls. Environ. Health Perspect. 2012, 120, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Logue, J.M.; McKone, T.E.; Sherman, M.H.; Singer, B.C. Hazard assessment of chemical air contaminants measured in residences: Hazard assessment of indoor air contaminants. Indoor Air 2011, 21, 92–109. [Google Scholar] [CrossRef] [PubMed]
- Spengler, J.; Sexton, K. Indoor air pollution: A public health perspective. Science 1983, 221, 9–17. [Google Scholar] [CrossRef] [PubMed]
- SGX Sensortech MICS-6814 Data Sheet. Available online: https://sgx.cdistore.com/datasheets/sgx/1143_Datasheet%20MiCS-6814%20rev%208.pdf (accessed on 18 January 2019).
- Espressif Systems ESP8266EX Datasheet. 2018. Available online: https://espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf (accessed on 23 January 2019).
- Neuburg, M. iOS 7 Programming Fundamentals: Objective-c, xcode, and cocoa Basics; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2013; ISBN 1-4919-4690-3. [Google Scholar]
- Müller, H.; Gove, J.L.; Webb, J.S.; Cheang, A. Understanding and Comparing Smartphone and Tablet Use: Insights from a Large-Scale Diary Study. In Proceedings of the Annual Meeting of the Australian Special Interest Group for Computer Human Interaction, Parkville, Australia, 7–10 December 2015; ACM: New York, NY, USA, 2015; pp. 427–436. [Google Scholar]
- van Deursen, A.J.A.M.; Bolle, C.L.; Hegner, S.M.; Kommers, P.A.M. Modeling habitual and addictive smartphone behavior. Comput. Hum. Behav. 2015, 45, 411–420. [Google Scholar] [CrossRef]
- Montag, C.; Błaszkiewicz, K.; Sariyska, R.; Lachmann, B.; Andone, I.; Trendafilov, B.; Eibes, M.; Markowetz, A. Smartphone usage in the 21st century: Who is active on WhatsApp? BMC Res. Notes 2015, 8, 331. [Google Scholar] [CrossRef]
- Pearson, C.; Hussain, Z. Smartphone Use, Addiction, Narcissism, and Personality: A Mixed Methods Investigation. Int. J. Cyber Behav. Psychol. Learn. 2015, 5, 17–32. [Google Scholar] [CrossRef]
- Srivatsa, P.; Pandhare, A. Indoor Air Quality: IoT Solution. Available online: http://www.ijrat.org/downloads/ncpci2016/ncpci-46.pdf (accessed on 22 December 2018).
- Salamone, F.; Belussi, L.; Danza, L.; Galanos, T.; Ghellere, M.; Meroni, I. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality. Sensors 2017, 17, 1021. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sridevi, S.; Pitchiah, R. Indoor air quality monitoring using wireless sensor network. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 422–427. [Google Scholar]
- Salamone, F.; Belussi, L.; Danza, L.; Ghellere, M.; Meroni, I. Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis. Sensors 2015, 15, 13012–13027. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.K.; Chew, S.P.; Jusoh, M.T.; Khairunissa, A.; Leong, K.Y.; Azid, A.A. WSN based indoor air quality monitoring in classrooms. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2017; p. 020063. [Google Scholar]
- Liu, J.-H.; Chen, Y.-F.; Lin, T.-S.; Lai, D.-W.; Wen, T.-H.; Sun, C.-H.; Juang, J.-Y.; Jiang, J.-A. Developed urban air quality monitoring system based on wireless sensor networks. In Proceedings of the 2011 Fifth International Conference on Sensing Technology (ICST), Palmerston North, New Zealand, 28 November–1 December 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 549–554. [Google Scholar]
- Kang, J.; Hwang, K.-I. A Comprehensive Real-Time Indoor Air-Quality Level Indicator. Sustainability 2016, 8, 881. [Google Scholar] [CrossRef]
Air Pollutant | Range |
---|---|
Carbon monoxide (CO) | 1–1000 ppm |
Nitrogen dioxide (NO2) | 0.05–10 ppm |
Ethanol (C2H6OH) | 10–500 ppm |
Hydrogen (H2) | 1–1000 ppm |
Ammonia (NH3) | 1–500 ppm |
Methane (CH4) | >1000 ppm |
Propane (C3H8) | >1000 ppm |
Isobutane (C4H10) | >1000 ppm |
Component | Cost |
---|---|
ESP8266 | 10.39 USD |
MICS-6814 | 39.90 USD |
Cables and box | 9.59 USD |
Total | 59.88 USD |
Air Pollutant | Range | Price | |
---|---|---|---|
SMART SENSOR AR8500 | NH3 | 0–100 ppm | 280 USD |
FORENSICS NR3000 | NH3 | 0–1000 ppm | 240 USD |
QIRUY NH3 MONITOR | NH3 | 0–100 ppm | 170 USD |
BW GAXT-A-DL | NH3 | 0–100 ppm | 490 USD |
SENSOR INSPECTOR PRO | CO | 0–2000 ppm | 200 USD |
KLEIN TOOLS ET100 | CO | 0–1000 ppm | 100 USD |
SMART SENSOR AR8900 | NO2 | 0–20 ppm | 300 USD |
Mobile Application | Air Pollutant | Android Support | iOS Support |
---|---|---|---|
Indoor Air Quality Sensor | IAQ index, temperature, CO2, VOC, humidity | √ | × |
Air Mentor App | IAQ index, temperature, CO2, VOC, relative humidity, PM | √ | √ |
Acer Air Monitor | Temperature, PM, VOC, relative humidity | √ | √ |
Air Quality Meter | IAQ index, PM | √ | × |
AQM Air Quality Monitor | Temperature, relative humidity, CO2 | √ | × |
Authors | MCU | Sensors | Architecture | Low Cost | Open-Source | Connectivity | Data Access | Easy Installation | Notifications |
---|---|---|---|---|---|---|---|---|---|
Srivatsa and Pandhare [67] | Raspberry Pi | CO2 | WSN/IoT | √ | √ | Wi-Fi | Web | × | × |
Salamone et al. [68] | Arduino UNO | CO2 | WSN | √ | √ | ZigBee | × | × | × |
Bhattacharya et al. [69] | Waspmote | CO, CO2, PM, Temperature, Relative Humidity | WSN | × | √ | ZigBee | Desktop | × | × |
Salamone et al. [70] | Arduino UNO | Temperature, Relative Humidity, CO2, Ligth, Air velocity | IoT | √ | √ | ZigBee/BLE | Mobile | × | × |
Wang et al. [71] | Arduino | Temperature, Relative Humidity, CO2 | WSN | √ | √ | ZigBee | Desktop | × | × |
Liu et al. [72] | TI MSP430 | CO, Temperature, Relative Humidity | WSN | √ | √ | ZigBee | × | × | × |
Kang and Hwang [73] | TI MSP430 | CO, Temperature, Relative Humidity, VOC, PM | IoT | √ | × | ZigBee | × | × | × |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, G.; Pitarma, R. A Cost-Effective Air Quality Supervision Solution for Enhanced Living Environments through the Internet of Things. Electronics 2019, 8, 170. https://doi.org/10.3390/electronics8020170
Marques G, Pitarma R. A Cost-Effective Air Quality Supervision Solution for Enhanced Living Environments through the Internet of Things. Electronics. 2019; 8(2):170. https://doi.org/10.3390/electronics8020170
Chicago/Turabian StyleMarques, Gonçalo, and Rui Pitarma. 2019. "A Cost-Effective Air Quality Supervision Solution for Enhanced Living Environments through the Internet of Things" Electronics 8, no. 2: 170. https://doi.org/10.3390/electronics8020170
APA StyleMarques, G., & Pitarma, R. (2019). A Cost-Effective Air Quality Supervision Solution for Enhanced Living Environments through the Internet of Things. Electronics, 8(2), 170. https://doi.org/10.3390/electronics8020170