A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management
Abstract
:1. Introduction
2. Literature Review
2.1. MCDM Background in the Sustainability Domain
2.2. MCDM Methods in Energy Policy Modeling
2.3. MCDM Based Uncertain Data Modeling
3. Preliminaries
Operational Laws on q-Rung Orthopair Fuzzy Numbers
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)
- (1)
- If , then
- (2)
- If , then:
- if , then ,
- if , then .
4. Einstein Operational Laws of q-ROFNs
- (i)
- (ii)
- (iii)
- if and , then
- (iv)
- (neutral element one) and
- (minimum or Gdel t-norm)
- (product t-norm)
- (Lukasiewicz t-norm)
- (i)
- (ii)
- (iii)
- if and , then
- (iv)
- (neutral element zero) and
- (maximum or Gdel t-conorm)
- (product t-conorm)
- (Lukasiewicz t-conorm)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)
- (viii)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
5. q-Rung Orthopair Fuzzy Einstein Aggregation Operators
5.1. q-Rung Orthopair Fuzzy Einstein Weighted Averaging Operator
5.2. q-Rung Orthopair Fuzzy Einstein Ordered Weighted Averaging Operator
5.3. q-Rung Orthopair Fuzzy Einstein Weighted Geometric Operator
5.4. q-Rung Orthopair Fuzzy Einstein Ordered Weighted Geometric Operator
6. MCDM Problem for the Proposed Operators
Algorithm 1. The decision-making algorithm based on q-ROFNs and Einstein Aggregation Operators |
Step 1: Acquire a decision matrix in the form of q-ROFNs from the decision maker. Step 2: The criteria involved in the decision matrix are defined by two types, namely cost-type criteria and benefit-type criteria . If all criteria are the same types, there is no need for normalization, but there are two types of criteria in MCDM; in this case using the normalization formula the matrix D has been changed into normalizing matrix : Step 3: Use one of the suggested operators to determine cumulative assessments of the alternatives. Step 4: Calculate the score of all cumulative assessments of the alternatives. Step 5: Rank the alternatives by the score function and ultimately choose the most suitable alternative. |
6.1. Case Study
- The energy and power evaluation program (ENPEP) is a nonlinear equilibrium model that balances the requirement for energy with available resources and technologies;
- Market allocation (MARKAL) is an integrated energy system that may be used to quantify the consequences of policy decisions on technology development and resource consumption;
- The model for the energy supply strategy alternatives and their general environmental impact (MESSAGE) combines technologies and fuels and constructs energy chains, which allows mapping energy flows from resource extraction to energy services; and
- The long-range energy alternatives planning system (LEAP) assists in energy policy analysis, especially tracking energy consumption, production, and resource extraction. These strategies are well designed for various levels of energy management. Energy models include a reliable framework to check predictions by organizing massive amounts of data in an open manner that reflects a stable system.
6.2. Illustrative Example
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
REF | The current proposal and policy of the state is being pursued in this situation. |
RET | Sustainable energy options and technology are favored under this situation. |
CCM | The choice of clean coal is favorable under this scenario. |
EEC | The efficiency and conservation measures are considered under this scenario. |
Appendix A
Appendix A.1.
Appendix A.2.
Appendix A.3.
Appendix A.4.
Appendix A.5.
Appendix A.6.
References
- Kaya, İ.; Çolak, M.; Terzi, F. A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strateg. Rev. 2019, 24, 207–228. [Google Scholar] [CrossRef]
- Çolak, M.; Kaya, İ. Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey. Renew. Sustain. Energy Rev. 2017, 80, 840–853. [Google Scholar] [CrossRef]
- Doukas, H.; Patlitzianas, K.D.; Psarras, J. Supporting sustainable electricity technologies in Greece using MCDM. Resour. Policy 2006, 31, 129–136. [Google Scholar] [CrossRef]
- Roy, B. Paradigms and challenges. In Multiple Criteria Decision Analysis: State of the Art Surveys; Springer: New York, NY, USA, 2005; pp. 3–24. [Google Scholar]
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Faizi, S.; Sałabun, W.; Rashid, T.; Wątróbski, J.; Zafar, S. Group decision making for hesitant fuzzy sets based on characteristic objects method. Symmetry 2017, 9, 136. [Google Scholar] [CrossRef]
- Schläfke, M.; Silvi, R.; Möller, K. A framework for business analytics in performance management. Int. J. Product. Perform. Manag. 2013, 62, 110–122. [Google Scholar] [CrossRef]
- Faizi, S.; Rashid, T.; Sałabun, W.; Zafar, S.; Wątróbski, J. Decision making with uncertainty using hesitant fuzzy sets. Int. J. Fuzzy Syst. 2018, 20, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Faizi, S.; Sałabun, W.; Ullah, S.; Rashid, T.; Więckowski, J. A New Method to Support Decision-Making in an Uncertain Environment Based on Normalized Interval-Valued Triangular Fuzzy Numbers and COMET Technique. Symmetry 2020, 12, 516. [Google Scholar] [CrossRef] [Green Version]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision making techniques and applications–Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Corrente, S.; Figueira, J.R.; Greco, S.; Słowiński, R. A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis. Omega 2017, 73, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wątróbski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Zioło, M. Generalised framework for multi-criteria method selection. Omega 2019, 86, 107–124. [Google Scholar] [CrossRef]
- Mirakyan, A.; De Guio, R. Integrated energy planning in cities and territories: A review of methods and tools. Renew. Sustain. Energy Rev. 2013, 22, 289–297. [Google Scholar] [CrossRef]
- Strantzali, E.; Aravossis, K. Decision making in renewable energy investments: A review. Renew. Sustain. Energy Rev. 2016, 55, 885–898. [Google Scholar] [CrossRef]
- Løken, E. Use of multicriteria decision analysis methods for energy planning problems. Renew. Sustain. Energy Rev. 2007, 11, 1584–1595. [Google Scholar] [CrossRef]
- Martín-Gamboa, M.; Iribarren, D.; García-Gusano, D.; Dufour, J. A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J. Clean. Prod. 2017, 150, 164–174. [Google Scholar] [CrossRef]
- Arce, M.E.; Saavedra, Á.; Míguez, J.L.; Granada, E. The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review. Renew. Sustain. Energy Rev. 2015, 47, 924–932. [Google Scholar] [CrossRef]
- Doukas, H. Modelling of linguistic variables in multicriteria energy policy support. Eur. J. Oper. Res. 2013, 227, 227–238. [Google Scholar] [CrossRef]
- Sałabun, W.; Piegat, A. Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artif. Intell. Rev. 2017, 48, 557–571. [Google Scholar] [CrossRef]
- Ribeiro, R.A. Fuzzy multiple attribute decision making: A review and new preference elicitation techniques. Fuzzy Sets Syst. 1996, 78, 155–181. [Google Scholar] [CrossRef]
- Sałabun, W.; Karczmarczyk, A.; Wątróbski, J.; Jankowski, J. Handling Data Uncertainty in Decision Making with COMET. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 Novermber 2018; pp. 1478–1484. [Google Scholar]
- Tecle, A. Choice of Multicriterion Decision Making Techniques for Watershed Management; The University of Arizona: Tucson, AZ, USA, 1988. [Google Scholar]
- Haimes, Y.Y.; Hall, W.A. Multiobjectives in water resource systems analysis: The surrogate worth trade off method. Water Resourc. Res. 1974, 10, 615–624. [Google Scholar] [CrossRef]
- Gershon, M.; Duckstein, L. A procedure for selection of a multiobjective technique with application to water and mineral resources. Appl. Math. Comput. 1984, 14, 245–271. [Google Scholar] [CrossRef]
- Tecle, A.; Fogel, M. Multiobjective wastewater management planning in a semiarid region. Ariz.-Nev. Acad. Sci. 1986, 16, 43–61. [Google Scholar]
- Ghandforoush, P.; Greber, B.J. Solving allocation and scheduling problems inherent in forest resource management using mixed-integer programming. Comput. Oper. Res. 1986, 13, 551–562. [Google Scholar] [CrossRef]
- Duckstein, L.; Gershon, M.; McAniff, R. Model selection in multiobjective decision making for river basin planning. Adv. Water Resour. 1982, 5, 178–184. [Google Scholar] [CrossRef]
- Romero, C.; Rehman, T. Natural resource management and the use of multiple criteria decision making techniques: A review. Eur. Rev. Agric. Econ. 1987, 14, 61–89. [Google Scholar] [CrossRef]
- Roy, B.; Hugonnard, J.C. Ranking of suburban line extension projects on the Paris metro system by a multicriteria method. Transp. Res. Part A Gen. 1982, 16, 301–312. [Google Scholar] [CrossRef]
- Nijkamp, P.; Spronk, J. Interactive multidimensional programming models for locational decisions. Eur. J. Oper. Res. 1981, 6, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Werczberger, E. A goal-programming model for industrial location involving environmental considerations. Environ. Plan. A 1976, 8, 173–188. [Google Scholar] [CrossRef]
- Vachnadze, R.; Markozashvili, N. Some applications of the analytic hierarchy process. Math. Model. 1987, 9, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Nijkamp, P.; Van Der Burch, M.; Vindigni, G. A comparative institutional evaluation of public-private partnerships in Dutch urban land-use and revitalisation projects. Urban Stud. 2002, 39, 1865–1880. [Google Scholar] [CrossRef]
- Ellis, H.M.; Keeney, R.L. A Rational Approach to Governmental Decision Concerning Air Pollution; Massachusetts Institute of Technology: Cambridge, MA, USA, 1971. [Google Scholar]
- Nijkamp, P.; van Delft, A. Multi-Criteria Analysis and Regional Decision-Making; Springer Science & Business Media: Berlin, Germany, 1977; Volume 8. [Google Scholar]
- Punj, G.N.; Staelin, R. The choice process for graduate business schools. J. Mark. Res. 1978, 15, 588–598. [Google Scholar] [CrossRef]
- Bouyssou, D. Building criteria: A prerequisite for MCDA. In Readings in Multiple Criteria Decision Aid; Springer: Berlin/Heidelberg, Germany, 1990; pp. 58–80. [Google Scholar]
- Keeney, R.L.; Raiffa, H. Decision Analysis with Multiple Conflicting Objectives; Wiley& Sons: New York, NY, USA, 1976. [Google Scholar]
- Siskos, J.; Zopounidis, C. The evaluation criteria of the venture capital investment activity: An interactive assessment. Eur. J. Oper. Res. 1987, 31, 304–313. [Google Scholar] [CrossRef]
- Nijkamp, P.; Spronk, J. Multiple Criteria Analysis: Operational Methods; Lexington Books: Plymouth, UK, 1981. [Google Scholar]
- Duckstein, L. Multiobjective Optimization in Structural Design: The Model Choice Problem; Technical Report; Arizona Univ Tucson Dept of Systems and Industrial Engineering: Tucson, AZ, USA, 1981. [Google Scholar]
- Despontin, M.; Vincke, P. Multiple Criteria Economic Policy; Advances in Operations Research; North-Holland Publ. Co.: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Herner, S.; Snapper, K.J. The application of multiple-criteria utility theory to the evaluation of information systems. J. Am. Soc. Inf. Sci. 1978, 29, 289–296. [Google Scholar] [CrossRef]
- MacCrimmon, K.R. Decisionmaking among Multiple-Attribute Alternatives: A Survey and Consolidated Approach; Technical Report; Rand Corp.: Santa Monica, CA, USA, 1968. [Google Scholar]
- Labuschagne, C.; Brent, A.C.; Van Erck, R.P. Assessing the sustainability performances of industries. J. Clean. Prod. 2005, 13, 373–385. [Google Scholar] [CrossRef] [Green Version]
- Janssen, R. Multiobjective Decision Support for Environmental Management; Springer Science & Business Media: Berlin, Germany, 2012; Volume 2. [Google Scholar]
- Sala, S.; Ciuffo, B.; Nijkamp, P. A systemic framework for sustainability assessment. Ecol. Econ. 2015, 119, 314–325. [Google Scholar] [CrossRef]
- Awan, M.A.; Ali, Y. Sustainable modeling in reverse logistics strategies using fuzzy MCDM. Manag. Environ. Qual. Int. J. 2019, 30, 1132–1151. [Google Scholar] [CrossRef]
- Boggia, A.; Cortina, C. Measuring sustainable development using a multi-criteria model: A case study. J. Environ. Manag. 2010, 91, 2301–2306. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Analytic hierarchy process and expert choice: Benefits and limitations. Or Insight 2009, 22, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Shahroodi, K.; Amin, K.; Shabnam, A.; Elnaz, S.; Najibzadeh, M. Application of analytical hierarchy process (AHP) technique to evaluate and selecting suppliers in an effective supply chain. Kuwait Chapter Arab. J. Bus. Manag. Rev. 2012, 33, 1–14. [Google Scholar]
- Edwards, W.; Newman, J.R.; Snapper, K.; Seaver, D. Multiattribute Evaluation; Number 26; Chronicle Books: San Francisco, CA, USA, 1982. [Google Scholar]
- Wang, J.; Zionts, S. Negotiating wisely: Considerations based on MCDM/MAUT. Eur. J. Oper. Res. 2008, 188, 191–205. [Google Scholar] [CrossRef]
- Wątróbski, J.; Ziemba, E.; Karczmarczyk, A.; Jankowski, J. An index to measure the sustainable information society: The Polish households case. Sustainability 2018, 10, 3223. [Google Scholar] [CrossRef] [Green Version]
- Al-Shalabi, M.A.; Mansor, S.B.; Ahmed, N.B.; Shiriff, R. GIS based multicriteria approaches to housing site suitability assessment. In Proceedings of the XXIII FIG Congress, Shaping the Change, Munich, Germany, 8–13 October 2006; pp. 8–13. [Google Scholar]
- Liu, H.C.; Mao, L.X.; Zhang, Z.Y.; Li, P. Induced aggregation operators in the VIKOR method and its application in material selection. Appl. Math. Model. 2013, 37, 6325–6338. [Google Scholar] [CrossRef]
- Kwak, N.; Lee, C.W.; Kim, J.H. An MCDM model for media selection in the dual consumer/industrial market. Eur. J. Oper. Res. 2005, 166, 255–265. [Google Scholar] [CrossRef]
- Yue, W.; Cai, Y.; Rong, Q.; Cao, L.; Wang, X. A hybrid MCDA-LCA approach for assessing carbon foot-prints and environmental impacts of China’s paper producing industry and printing services. Environ. Syst. Res. 2014, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Koschke, L.; Fürst, C.; Frank, S.; Makeschin, F. A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecol. Indic. 2012, 21, 54–66. [Google Scholar] [CrossRef]
- Jankowski, J.; Hamari, J.; Wątróbski, J. A gradual approach for maximizing user conversion without compromising experience with high visual intensity website elements. arXiv 2019, arXiv:1903.11997. [Google Scholar]
- Samal, R.K.; Kansal, M.L. Sustainable development contribution assessment of renewable energy projects using AHP and compromise programming techniques. In Proceedings of the 2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE), Shillong, India, 12–13 June 2015; pp. 1–6. [Google Scholar]
- Govindan, K.; Jepsen, M.B. ELECTRE: A comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 2016, 250, 1–29. [Google Scholar] [CrossRef]
- Hatefi, S.; Torabi, S. A slack analysis framework for improving composite indicators with applications to human development and sustainable energy indices. Econ. Rev. 2018, 37, 247–259. [Google Scholar] [CrossRef]
- Linhoss, A.; Jeff Ballweber, J. Incorporating uncertainty and decision analysis into a water-sustainability index. J. Water Resour. Plan. Manag. 2015, 141, A4015007. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Koh, S.L.; Rosa, P. A comparison of environmental and energetic performance of European countries: A sustainability index. Renew. Sustain. Energy Rev. 2017, 78, 401–413. [Google Scholar] [CrossRef]
- Kumar, T.; Jhariya, D. Land quality index assessment for agricultural purpose using multi-criteria decision analysis (MCDA). Geocarto Int. 2015, 30, 822–841. [Google Scholar] [CrossRef]
- Sałabun, W.; Wątróbski, J.; Piegat, A. Identification of a multi-criteria model of location assessment for renewable energy sources. In International Conference on Artificial Intelligence and Soft Computing; Springer: Cham, Switzerland, 2016; pp. 321–332. [Google Scholar]
- Pohekar, S.; Ramachandran, M. Application of multi-criteria decision making to sustainable energy planning—A review. Renew. Sustain. Energy Rev. 2004, 8, 365–381. [Google Scholar] [CrossRef]
- Ilbahar, E.; Cebi, S.; Kahraman, C. A state-of-the-art review on multi-attribute renewable energy decision making. Energy Strateg. Rev. 2019, 25, 18–33. [Google Scholar] [CrossRef]
- Roy, B. Multicriteria Methodology for Decision Aiding; Springer Science & Business Media: Berlin, Germany, 2013; Volume 12. [Google Scholar]
- Zyoud, S.H.; Fuchs-Hanusch, D. A bibliometric-based survey on AHP and TOPSIS techniques. Expert Syst. Appl. 2017, 78, 158–181. [Google Scholar] [CrossRef]
- Ahmad, S.; Tahar, R.M. Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renew. Energy 2014, 63, 458–466. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Solangi, Y.A. Strategic renewable energy resources selection for Pakistan: Based on SWOT-Fuzzy AHP approach. Sustain. Cities Soc. 2020, 52, 101861. [Google Scholar] [CrossRef]
- Erol, Ö.; Kılkış, B. An energy source policy assessment using analytical hierarchy process. Energy Convers. Manag. 2012, 63, 245–252. [Google Scholar] [CrossRef]
- Abdullah, L.; Najib, L. Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. Int. J. Sustain. Energy 2016, 35, 360–377. [Google Scholar] [CrossRef]
- Vavrek, R.; Chovancová, J. Assessment of economic and environmental energy performance of EU countries using CV-TOPSIS technique. Ecol. Indic. 2019, 106, 105519. [Google Scholar] [CrossRef]
- Mojaver, P.; Khalilarya, S.; Chitsaz, A.; Assadi, M. Multi-objective optimization of a power generation system based SOFC using Taguchi/AHP/TOPSIS triple method. Sustain. Energy Technol. Assess. 2020, 38, 100674. [Google Scholar] [CrossRef]
- Liu, J.; Yin, Y. An integrated method for sustainable energy storing node optimization selection in China. Energy Convers. Manag. 2019, 199, 112049. [Google Scholar] [CrossRef]
- Wang, B.; Song, J.; Ren, J.; Li, K.; Duan, H. Selecting sustainable energy conversion technologies for agricultural residues: A fuzzy AHP-VIKOR based prioritization from life cycle perspective. Resour. Conserv. Recycl. 2019, 142, 78–87. [Google Scholar] [CrossRef]
- Ziemba, P.; Wątróbski, J.; Zioło, M.; Karczmarczyk, A. Using the PROSA method in offshore wind farm location problems. Energies 2017, 10, 1755. [Google Scholar] [CrossRef] [Green Version]
- Ziemba, P. Towards strong sustainability management—A generalized PROSA method. Sustainability 2019, 11, 1555. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, C.; Bhowmik, S.; Ray, A.; Pandey, K.M. Optimal green energy planning for sustainable development: A review. Renew. Sustain. Energy Rev. 2017, 71, 796–813. [Google Scholar] [CrossRef]
- Mousavi, M.; Gitinavard, H.; Mousavi, S. A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information. Renew. Sustain. Energy Rev. 2017, 68, 774–787. [Google Scholar] [CrossRef]
- Schröder, T.; Lauven, L.P.; Beyer, B.; Lerche, N.; Geldermann, J. Using PROMETHEE to assess bioenergy pathways. Cent. Eur. J. Oper. Res. 2019, 27, 287–309. [Google Scholar] [CrossRef]
- Tabaraee, E.; Ebrahimnejad, S.; Bamdad, S. Evaluation of power plants to prioritise the investment projects using fuzzy PROMETHEE method. Int. J. Sustain. Energy 2018, 37, 941–955. [Google Scholar] [CrossRef]
- Sharma, D.; Pandey, A.; Kumar, C.; Ranjan, R. Assessment & anthology of sustainable sources of energy using an approach of PROMETHEE. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 691, p. 012040. [Google Scholar]
- Dias, L.C.; Antunes, C.H.; Dantas, G.; de Castro, N.; Zamboni, L. A multi-criteria approach to sort and rank policies based on Delphi qualitative assessments and ELECTRE TRI: The case of smart grids in Brazil. Omega 2018, 76, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.G.; Shen, K.W.; He, S.S.; Zhang, H.Y.; Wang, J.Q. Investment risk evaluation for new energy resources: An integrated decision support model based on regret theory and ELECTRE III. Energy Convers. Manag. 2019, 183, 332–348. [Google Scholar] [CrossRef]
- Özcan, E.C.; Ünlüsoy, S.; Eren, T. A combined goal programming–AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants. Renew. Sustain. Energy Rev. 2017, 78, 1410–1423. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy 2010, 35, 2517–2527. [Google Scholar]
- Solangi, Y.A.; Tan, Q.; Mirjat, N.H.; Ali, S. Evaluating the strategies for sustainable energy planning in Pakistan: An integrated SWOT-AHP and Fuzzy-TOPSIS approach. J. Clean. Prod. 2019, 236, 117655. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K.T. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 33, 37–45. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean fuzzy subsets. In Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 24–28 June 2013; pp. 57–61. [Google Scholar]
- Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 2013, 28, 436–452. [Google Scholar] [CrossRef]
- Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 2013, 22, 958–965. [Google Scholar] [CrossRef]
- Bashir, Z.; Rashid, T.; Sałabun, W.; Zafar, S. Certain convergences for intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 2020, 38, 553–564. [Google Scholar] [CrossRef]
- Yager, R.R. Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 2016, 25, 1222–1230. [Google Scholar] [CrossRef]
- Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 1988, 18, 183–190. [Google Scholar] [CrossRef]
- Akram, M. Bipolar fuzzy graphs. Inf. Sci. 2011, 181, 5548–5564. [Google Scholar] [CrossRef]
- Akram, M.; Ali, G.; Alshehri, N.O. A new multi-attribute decision making method based on m-polar fuzzy soft rough sets. Symmetry 2017, 9, 271. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Sayed, S.; Smarandache, F. Neutrosophic incidence graphs with application. Axioms 2018, 7, 47. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Waseem, N.; Liu, P. Novel Approach in Decision Making with m—Polar Fuzzy ELECTRE-I. Int. J. Fuzzy Syst. 2019, 21, 1117–1129. [Google Scholar] [CrossRef]
- Ali, M.I. A note on soft sets, rough soft sets and fuzzy soft sets. Appl. Soft Comput. 2011, 11, 3329–3332. [Google Scholar]
- Garg, H.; Arora, R. Generalized intuitionistic fuzzy soft power aggregation operator based on t-norm and their application in multicriteria decision making. Int. J. Intell. Syst. 2019, 34, 215–246. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Dual hesitant fuzzy soft aggregation operators and their application in decision making. Cogn. Comput. 2018, 10, 769–789. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. A nonlinear-programming methodology for multi-attribute decision making problem with interval-valued intuitionistic fuzzy soft sets information. Appl. Intell. 2018, 48, 2031–2046. [Google Scholar] [CrossRef]
- Garg, H.; Arora, R. Novel scaled prioritized intuitionistic fuzzy soft interaction averaging aggregation operators and their application to multi criteria decision making. Eng. Appl. Artif. Intell. 2018, 71, 100–112. [Google Scholar] [CrossRef]
- Hashmi, M.R.; Riaz, M.; Smarandache, F. m-polar Neutrosophic Topology with Applications to Multi-Criteria Decision-Making in Medical Diagnosis and Clustering Analysis. Int. J. Fuzzy Syst. 2020, 22, 273–292. [Google Scholar] [CrossRef]
- Hashmi, M.R.; Riaz, M. A novel approach to censuses process by using Pythagorean m-polar fuzzy Dombi’s aggregation operators. J. Intell. Fuzzy Syst. 2020, 38, 1977–1995. [Google Scholar] [CrossRef]
- Kumar, K.; Garg, H. TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 2018, 37, 1319–1329. [Google Scholar] [CrossRef]
- Karaaslan, F. Neutrosophic soft sets with applications in decision making. Int. J. Inf. Sci. Intell. Syst. 2015, 2, 1–20. [Google Scholar]
- Naeem, K.; Riaz, M.; Peng, X.; Afzal, D. Pythagorean fuzzy soft MCGDM methods based on TOPSIS, VIKOR and aggregation operators. J. Intell. Fuzzy Syst. 2019, 37, 6937–6957. [Google Scholar] [CrossRef]
- Naeem, K.; Riaz, M.; Afzal, D. Pythagorean m-polar fuzzy sets and TOPSIS method for the selection of advertisement mode. J. Intell. Fuzzy Syst. 2019, 37, 8441–8458. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Y. Some results for Pythagorean fuzzy sets. Int. J. Intell. Syst. 2015, 30, 1133–1160. [Google Scholar] [CrossRef]
- Peng, X.; Yuan, H.; Yang, Y. Pythagorean fuzzy information measures and their applications. Int. J. Intell. Syst. 2017, 32, 991–1029. [Google Scholar] [CrossRef]
- Peng, X.; Selvachandran, G. Pythagorean fuzzy set: State of the art and future directions. Artif. Intell. Rev. 2019, 52, 1873–1927. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Y.; Song, J.; Jiang, Y. Pythagorean fuzzy soft set and its application. Comput. Eng. 2015, 41, 224–229. [Google Scholar]
- Peng, X.; Dai, J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl. 2018, 29, 939–954. [Google Scholar] [CrossRef]
- Riaz, M.; Çağman, N.; Zareef, I.; Aslam, M. N-soft topology and its applications to multi-criteria group decision making. J. Intell. Fuzzy Syst. 2019, 36, 6521–6536. [Google Scholar] [CrossRef]
- Riaz, M.; Smarandache, F.; Firdous, A.; Fakhar, A. On soft rough topology with multi-attribute group decision making. Mathematics 2019, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.; Davvaz, B.; Firdous, A.; Fakhar, A. Novel concepts of soft rough set topology with applications. J. Intell. Fuzzy Syst. 2019, 36, 3579–3590. [Google Scholar] [CrossRef]
- Riaz, M.; Hashmi, M.R. MAGDM for agribusiness in the environment of various cubic m-polar fuzzy averaging aggregation operators. J. Intell. Fuzzy Syst. 2019, 37, 3671–3691. [Google Scholar] [CrossRef]
- Riaz, M.; Hashmi, M.R. Linear Diophantine fuzzy set and its applications towards multi-attribute decision making problems. J. Intell. Fuzzy Syst. 2019, 37, 5417–5439. [Google Scholar] [CrossRef]
- Riaz, M.; Hashmi, M.R. Soft rough Pythagorean m-polar fuzzy sets and Pythagorean m-polar fuzzy soft rough sets with application to decision making. Comput. Appl. Math. 2020, 39, 16. [Google Scholar] [CrossRef]
- Riaz, M.; Tehrim, S.T. Certain properties of bipolar fuzzy soft topology via Q-neighborhood. Punjab Univ. J. Math. 2019, 51, 113–131. [Google Scholar]
- Riaz, M.; Tehrim, S.T. Cubic bipolar fuzzy ordered weighted geometric aggregation operators and their application using internal and external cubic bipolar fuzzy data. Comput. Appl. Math. 2019, 38, 87. [Google Scholar] [CrossRef]
- Riaz, M.; Tehrim, S.T. Multi-attribute group decision making based on cubic bipolar fuzzy information using averaging aggregation operators. J. Intell. Fuzzy Syst. 2019, 37, 2473–2494. [Google Scholar] [CrossRef]
- Riaz, M.; Tehrim, S.T. Bipolar fuzzy soft mappings with application to bipolar disorders. Int. J. Biomath. 2019, 12, 1950080. [Google Scholar] [CrossRef]
- Tehrim, S.T.; Riaz, M. A novel extension of TOPSIS to MCGDM with bipolar neutrosophic soft topology. J. Intell. Fuzzy Syst. 2019, 37, 5531–5549. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 2007, 15, 1179–1187. [Google Scholar]
- Xu, Z.; Cai, X. Intuitionistic Fuzzy Information Aggregation: Theory and Applications; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Xu, Z. Hesitant Fuzzy Sets Theory; Springer: Cham, Switzerland, 2014; Volume 314. [Google Scholar]
- Ye, J. Interval-valued hesitant fuzzy prioritized weighted aggregation operators for multiple attribute decision making. J. Algorithms Comput. Technol. 2014, 8, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Ye, J. Linguistic neutrosophic cubic numbers and their multiple attribute decision making method. Information 2017, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Zhan, J.; Liu, Q.; Davvaz, B. A new rough set theory: Rough soft hemirings. J. Intell. Fuzzy Syst. 2015, 28, 1687–1697. [Google Scholar] [CrossRef]
- Zhan, J.; Alcantud, J.C.R. A novel type of soft rough covering and its application to multicriteria group decision making. Artif. Intell. Rev. 2019, 52, 2381–2410. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, J. Fuzzy soft beta-covering based fuzzy rough sets and corresponding decision making applications. Int. J. Mach. Learn. Cybern. 2019, 10, 1487–1502. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, J.; Alcantud, J.C.R. Novel classes of fuzzy soft β-coverings based fuzzy rough sets with applications to multi-criteria fuzzy group decision making. Soft Comput. 2019, 23, 5327–5351. [Google Scholar] [CrossRef]
- Zhang, L.; Zhan, J.; Xu, Z. Covering-based generalized IF rough sets with applications to multi-attribute decision making. Inf. Sci. 2019, 478, 275–302. [Google Scholar] [CrossRef]
- Ali, M.I. Another view on q-rung orthopair fuzzy sets. Int. J. Intell. Syst. 2018, 33, 2139–2153. [Google Scholar] [CrossRef]
- Liu, P.; Wang, P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 2018, 33, 259–280. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Wu, Y.; Dong, Y. Ranking range based approach to MADM under incomplete context and its application in venture investment evaluation. Technol. Econ. Dev. Econ. 2019, 25, 877–899. [Google Scholar] [CrossRef]
- Phdungsilp, A.; Wuttipornpun, T. Analyses of the decarbonizing Thailand’s energy system toward low-carbon futures. Renew. Sustain. Energy Rev. 2013, 24, 187–197. [Google Scholar] [CrossRef]
- Mirjat, N.H.; Uqaili, M.A.; Harijan, K.; Valasai, G.D.; Shaikh, F.; Waris, M. A review of energy and power planning and policies of Pakistan. Renew. Sustain. Energy Rev. 2017, 79, 110–127. [Google Scholar] [CrossRef] [Green Version]
- Sahir, M.H. Energy System Modeling and Analysis of Long Term Sustainable Energy Alternatives for Pakistan. Ph.D. Thesis, University of Engineering and Technology Taxila-Pakistan, Taxila, Pakistan, 2007. [Google Scholar]
- Valasai, G.D.; Uqaili, M.A.; Memon, H.R.; Samoo, S.R.; Mirjat, N.H.; Harijan, K. Overcoming electricity crisis in Pakistan: A review of sustainable electricity options. Renew. Sustain. Energy Rev. 2017, 72, 734–745. [Google Scholar] [CrossRef]
- Heaps, C.G. Long-Range Energy Alternatives Planning (LEAP) System; Stockholm Environment Institute: Stockholm, Sweden, 2016. [Google Scholar]
- Hussain Mirjat, N.; Uqaili, M.A.; Harijan, K.; Mustafa, M.W.; Rahman, M.; Khan, M. Multi-criteria analysis of electricity generation scenarios for sustainable energy planning in Pakistan. Energies 2018, 11, 757. [Google Scholar] [CrossRef] [Green Version]
- Amer, M.; Daim, T.U. Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy Sustain. Dev. 2011, 15, 420–435. [Google Scholar] [CrossRef]
- Balin, A.; Baraçli, H. A fuzzy multi-criteria decision making methodology based upon the interval type-2 fuzzy sets for evaluating renewable energy alternatives in Turkey. Technol. Econ. Dev. Econ. 2017, 23, 742–763. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, C.; Cebi, S.; Kaya, I. Selection among renewable energy alternatives using fuzzy axiomatic design: The case of Turkey. J. UCS 2010, 16, 82–102. [Google Scholar]
- Kahraman, C.; Kaya, İ. A fuzzy multicriteria methodology for selection among energy alternatives. Expert Syst. Appl. 2010, 37, 6270–6281. [Google Scholar] [CrossRef]
- Kahraman, C.; Kaya, İ.; Cebi, S. A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy 2009, 34, 1603–1616. [Google Scholar] [CrossRef]
- Ribeiro, F.; Ferreira, P.; Araújo, M. Evaluating future scenarios for the power generation sector using a Multi-Criteria Decision Analysis (MCDA) tool: The Portuguese case. Energy 2013, 52, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Adhikary, P.; Roy, P.K.; Mazumdar, A. Multidimensional feasibility analysis of small hydropower project in India: A case study. ARPN J. Eng. Appl. Sci. 2014, 9, 80–84. [Google Scholar]
- Abu-Taha, R. Multi-criteria applications in renewable energy analysis: A literature review. In Proceedings of the 2011 Proceedings of PICMET’11: Technology Management in the Energy Smart World (PICMET), Portland, OR, USA, 31 July–4 August 2011; pp. 1–8. [Google Scholar]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Fleten, S.E.; Maribu, K.M.; Wangensteen, I. Optimal investment strategies in decentralized renewable power generation under uncertainty. Energy 2007, 32, 803–815. [Google Scholar] [CrossRef] [Green Version]
Scenario | Definition | Resources |
---|---|---|
CCM | The choice of clean coal is favorable under this scenario. | Indigenous coal, oil, gas, and nuclear. |
EEC | The efficiency and conservation measures are considered under this scenario. | Strategies for productivity and capacity for recycling. |
REF | The current proposal and policy of the state is being pursued in this situation. | As per the plans and policies of the state. |
RET | Sustainable energy options and technology are favored under this situation. | Sources of renewable energy, hydro, solar, wind, and biomass. |
Criteria | Definition | Ref | |
---|---|---|---|
Requirement for land | One of the key elements for an investment is land requirements. Furthermore, a good land call will assess monetary losses. | [150,151] | |
CO emissions | This selection criteria considers the emissions of CO and the costs related to waste treatment. | [152,153,154] | |
Waste disposal management | This alternative approach can be measured to reduce harm to life quality and improve sustainability by taking this criterion into account. | [153,154] | |
Risk | Measures the probability of failure. | [153,154,155] | |
Feasibility | Measures the energy scenario implementation probability. | [156,157] | |
Reliability | It is the capacity of a structure to operate according to the designed circumstances. | [83,84,158] | |
Job creation | Energy policies are measured by taking into consideration the labor effect measured by taking care of jobs directly and indirectly. | [47,49,158] | |
Investment cost | This consists of common expenditure throughout the establishment of a power plant, which covers the cost of machinery, manpower, construction, and infrastructure. | [63,91,159] | |
Political acceptance | This criterion examines that there may not be consensus among many of the views of the leaders on the planned energy policy. | [1,2,76,86] | |
Social acceptance | Social acceptance involves evaluating the company’s perceived understanding of ventures and measuring the customer’s opinions. | [1,2,15,69] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, M.; Sałabun, W.; Athar Farid, H.M.; Ali, N.; Wątróbski, J. A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management. Energies 2020, 13, 2155. https://doi.org/10.3390/en13092155
Riaz M, Sałabun W, Athar Farid HM, Ali N, Wątróbski J. A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management. Energies. 2020; 13(9):2155. https://doi.org/10.3390/en13092155
Chicago/Turabian StyleRiaz, Muhammad, Wojciech Sałabun, Hafiz Muhammad Athar Farid, Nawazish Ali, and Jarosław Wątróbski. 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management" Energies 13, no. 9: 2155. https://doi.org/10.3390/en13092155
APA StyleRiaz, M., Sałabun, W., Athar Farid, H. M., Ali, N., & Wątróbski, J. (2020). A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management. Energies, 13(9), 2155. https://doi.org/10.3390/en13092155