A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples
Abstract
:1. Introduction
2. Review of Triaxial Compression Test
2.1. Test Methods
2.2. Test Results
3. Nonlinear Elastic Constitutive Model
3.1. Duncan-Chang Model
3.2. Strength
3.3. Initial Tangent Elastic Modulus
3.4. Failure Ratio
3.5. Lateral Strain
3.6. Calculated Deviator Stress versus Axial and Lateral Strain
3.7. Unloading Modulus
4. Conclusions
Acknowledgments
References
- Makogon, Y.F. Hydrates of Natural Gas; Pennwell Publishing Co.: Tulsa, OK, USA, 1981. [Google Scholar]
- Makogon, Y.F. Perspectives for the Development of Gas-Hydrate Deposits. In Proceedings of the 4th Canadian Permafrost Conference, Calgary, Canada; 1982; pp. 299–304. [Google Scholar]
- Kvenvolden, K.A. A Major Reservoir of Carbon in the Shallow Geosphere? Chem. Geol. 1988, 71, 41–51. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Ginsburg, G.D.; Soloviev, V.A. Worldwide Distribution of Subaquatic Gas Hydrates. Geo-Marine Lett. 1993, 13, 32–40. [Google Scholar] [CrossRef]
- Collett, T.S.; Dallimore, S.R. Detailed Analysis of Gas Hydrate Induced Drilling and Production Hazards. In Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan; 2002; pp. 47–52. [Google Scholar]
- Bugge, T.; Belderson, R.H.; Kenyon, N.H. The Storegga Slide. Phil. Trans. Royal Soc. A 1988, 325, 357–388. [Google Scholar] [CrossRef]
- Kleinberg, R.L. Mechanical Stability of Seafloor Sediments with Application to Gas Hydrate Deposits. In Proceedings of the 5th International Conference on Gas Hydrates, Trondheim, Norway; 2005; pp. 736–748. [Google Scholar]
- Sakamoto, Y.; Shimokawara, M.; Ohga, K.; Miyazaki, K.; Tenma, N.; Komai, T.; Aoki, K.; Yamaguchi, T. Field Scale Simulation for Consolidation and Gas Production Behavior during Depressurization Process of Methane Hydrate in Marine Sediments. In Proceedings of the 2008 Offshore Technology Conference, Houston, TX, USA; 2008. OTC19283. [Google Scholar]
- Klar, A.; Soga, K.; Ng, M.Y.A. Coupled Deformation-Flow Analysis for Methane Hydrate Extraction. Geotechnique 2010, 60, 765–776. [Google Scholar] [CrossRef]
- Winters, W.J.; Pecher, I.A.; Booth, J.S.; Mason, D.H.; Relle, M.K.; Dillon, W.P. Properties of Samples Containing Natural Gas Hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Determined using Gas Hydrate and Sediment Test Laboratory Instrument (GHASTLI). Bull. Geol. Sur. Can. 1999, 544, 241–250. [Google Scholar]
- Winters, W.J.; Waite, W.F.; Mason, D.H.; Kumar, P. Physical Properties of Repressurized Samples Recovered during the National Gas Hydrate Program Expedition Offshore India. In Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, Canada; 2008. [Google Scholar]
- Masui, A.; Miyazaki, K.; Haneda, H.; Ogata, Y.; Aoki, K. Mechanical Characteristics of Natural and Artificial Gas Hydrate Bearing Sediments. In Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, Canada; 2008. [Google Scholar]
- Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.; Pecher, I.A. Effect of Grain Size and Pore Pressure on Acoustic and Strength Behavior of Sediments Containing Methane Gas Hydrate. In Proceedings of the 5th International Conference on Gas Hydrates, Trondheim, Norway; 2005; pp. 507–516. [Google Scholar]
- Masui, A.; Haneda, H.; Ogata, Y.; Aoki, K. Effects of Methane Hydrate Formation on Shear Strength of Synthetic Methane Hydrate Sediments. In Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, Korea; 2005; pp. 364–369. [Google Scholar]
- Hyodo, M.; Nakata, Y.; Yoshimoto, N.; Ebinuma, T. Basic Research on the Mechanical Behavior of Methane Hydrate-Sediments Mixture. Soils Found. 2005, 45, 75–85. [Google Scholar] [CrossRef]
- Miyazaki, K.; Masui, A.; Tenma, N.; Ogata, Y.; Aoki, K.; Yamaguchi, T.; Sakamoto, Y. Study on Mechanical Behavior for Methane Hydrate Sediment Based on Constant Strain-Rate Test and Unloading-Reloading Test Under Triaxial Compression. Int. J. Offshore Polar Eng. 2010, 20, 61–67. [Google Scholar]
- Miyazaki, K.; Masui, A.; Aoki, K.; Sakamoto, Y.; Yamaguchi, T.; Okubo, S. Strain-Rate Dependence of Triaxial Compressive Strength of Artificial Methane-Hydrate-Bearing Sediment. Int. J. Offshore Polar Eng. 2010, 20, 256–264. [Google Scholar]
- Miyazaki, K.; Masui, A.; Sakamoto, Y.; Tenma, N.; Yamaguchi, T. Effect of Confining Pressure on Triaxial Compressive Properties of Artificial Methane Hydrate Bearing Sediments. In Proceedings of the 2010 Offshore Technology Conference, Houston, TX, USA; 2010. OTC20721. [Google Scholar]
- Miyazaki, K.; Masui, A.; Sakamoto, Y.; Aoki, K.; Tenma, N.; Yamaguchi, T. Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment. J. Geophys. Res. 2011, 116, B06102. [Google Scholar]
- Miyazaki, K.; Aoki, K.; Tenma, N.; Sakamoto, Y.; Yamaguchi, T. Application of Nonlinear Elastic Constitutive Model to Analysis of Artificial Methane-Hydrate-Bearing Sediment Sample. In Proceedings of the 9th ISOPE Ocean Mining Symposium, Maui, HA, USA; 2011; pp. 15–20. [Google Scholar]
- Duncan, J.M.; Chang, C.Y. Nonlinear Analysis of Stress and Strain in Soils. J. Soil Mech. Found. Div. 1970, 96, 1629–1653. [Google Scholar]
- Janbu, N. Soil Compressibility as Determined by Oedometer and Triaxial Test. In Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany; 1963; pp. 19–25. [Google Scholar]
- Kulhawy, F.H.; Duncan, J.M. Stresses and Movements in Oroville Dam. J. Soil Mech. Found. Div. 1972, 98, 653–665. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Miyazaki, K.; Tenma, N.; Aoki, K.; Yamaguchi, T. A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples. Energies 2012, 5, 4057-4075. https://doi.org/10.3390/en5104057
Miyazaki K, Tenma N, Aoki K, Yamaguchi T. A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples. Energies. 2012; 5(10):4057-4075. https://doi.org/10.3390/en5104057
Chicago/Turabian StyleMiyazaki, Kuniyuki, Norio Tenma, Kazuo Aoki, and Tsutomu Yamaguchi. 2012. "A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples" Energies 5, no. 10: 4057-4075. https://doi.org/10.3390/en5104057
APA StyleMiyazaki, K., Tenma, N., Aoki, K., & Yamaguchi, T. (2012). A Nonlinear Elastic Model for Triaxial Compressive Properties of Artificial Methane-Hydrate-Bearing Sediment Samples. Energies, 5(10), 4057-4075. https://doi.org/10.3390/en5104057