Joint Random Forest and Particle Swarm Optimization for Predictive Pathloss Modeling of Wireless Signals from Cellular Networks
Abstract
:1. Introduction
- Measurement-based acquisition of detailed signal data and computation of attenuation loss levels across selected urban LTE microcellular radio communication paths using professional TEMS investigation tools.
- Effective application of the random forest technique for the most informative and important subset of features selection from measured signal data sets toward robust predictive analysis.
- Development and application of an improved signal path loss model using hybrid random forest and particle swarm optimization for optimal cellular planning across the investigated locations.
- Validation of the developed signal path loss models in other eNodeB (base stations) across the investigated locations to ascertain the level of their prediction accuracies.
2. Methods and Materials
2.1. Data Collection
2.2. Signal Propagation through Free Space
2.3. Random Forest
2.4. Particle Swarm Optimization (PSO)
2.5. Hybrid RF-PS Path Loss Modelling
Algorithm 1: PSO implementation Pseudocode |
1: initialization 2: Input: Set variables number, n and swarm size Set of initial parameters Objective function J(a), a = (a1, a2, a3) 3: Output: Set of best initial parameters Prediction model, ypred 4: Start PSO 5: for i = 1:s do 6: Evaluate J(a); 7: Pbest := ai; 8: end for 9: while (Halt condition) do 10: Compute the inertia weight wi 11: for i = 1:s do 12: if Xi. Xmax then 13: Xi = Xmax; 14: end if 15: if Xi\Xmin then 16: Xi = Xmin; 17: end if 18: Appraise J(a) 19: if J(a)\J(Pbest) then 20: pBesti : = Xi; 21: end if 22: if J(pBesti)\J(Gbest) then 23: GBest: =PBest; 24: end if |
2.6. Radial Basis Function (RBF) Networks
2.7. The Proposed Hybrid Path Loss Prediction Modeling Approach
2.8. Performance Index
3. Results and Discussions
3.1. Quantification and Analysis of the Measured Path Loss in Comparison with the Standard Path Loss Models
3.2. Dimensionality Reduction through Important Data Feature Selection Using RF
3.3. Enhanced Prediction Obtained with the Developed Hybrid RF-PS Optimization Method over the Standard Path Loss Optimization Methods
3.4. Validation Using the Developed (RF-PS) Optimization Method for Path Loss Prediction in Other Study Locations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, G.; Peng, G. The survey of GSM wireless communication system. In Proceedings of the Proceedings of ICCIA 2010–2010 International Conference on Computer and Information Application, Tianjin, China, 3–5 December 2010; pp. 121–124. [Google Scholar] [CrossRef]
- Rappaport, T.S. Wireless Communications: Principles and Applications, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Molisch, A.F. Wireless Communications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 9780470741870. [Google Scholar]
- Ojuh, D.O.; Isabona, J. Field Electromagnetic Strength Variability Measurement and Adaptive Prognostic Approximation with Weighed Least Regression Approach in the Ultra-high Radio Frequency Band. Int. J. Intell. Syst. Appl. 2021, 13, 14–23. [Google Scholar] [CrossRef]
- Saeed, M.A.; Saeed, M.U.; Hassan, M.A.S.; Javed, T. Impact of Propagation Path Loss by Varying BTS Height and Frequency for Combining Multiple Path Loss Approaches in Macro-Femto Environment. Arab. J. Sci. Eng. 2022, 47, 1227–1238. [Google Scholar] [CrossRef]
- Lee, W.C.Y. Mobile Communications Engineering; McGraw-Hill Professional: New York, NY, USA, 1982; ISBN 0-07-0377103-2. [Google Scholar]
- Banimelhem, O.; Al-Zu’bi, M.M.; Al Salameh, M.S. Hata path loss model tuning for cellular networks in Irbid City. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 1646–1650. [Google Scholar]
- Roslee, M.B.; Kwan, K.F. Optimization of Hata propagation prediction model in suburban area in Malaysia. Prog. Electromagn. Res. C 2010, 13, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, A.J. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Jackson, O.E.; Uthman, M.; Umar, S. Performance Analysis of Path Loss Prediction Models on Very High Frequency Spectrum. Eur. J. Eng. Technol. Res. 2022, 7, 87–91. [Google Scholar] [CrossRef]
- Ajose, S.O.; Imoize, A.L. Propagation measurements and modelling at 1800 MHz in Lagos Nigeria. Int. J. Wirel. Mob. Comput. 2013, 6, 165–174. [Google Scholar] [CrossRef]
- Mishra, A.R. Fundamentals of Cellular Network Planning and Optimisation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 047086267X. [Google Scholar]
- Jawhly, T.; Tiwari, R.C. The special case of Egli and Hata model optimization using least-square approximation method. SN Appl. Sci. 2020, 2, 1296. [Google Scholar] [CrossRef]
- Liming, X.; Dacheng, Y. A recursive algorithm for radio propagation model calibration based on CDMA forward pilot channel. In Proceedings of the 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, Beijing, China, 7–10 September 2003; Volume 1, pp. 970–972. [Google Scholar] [CrossRef]
- Cheng, K.; Lu, Z. Active learning Bayesian support vector regression model for global approximation. Inf. Sci. 2021, 544, 549–563. [Google Scholar] [CrossRef]
- Mohammed, A.K.; Jaafar, A.A. Performance Evaluation of Path Loss in Mobile Channel for Karada District in Baghdad City. Eng. Technol. J. 2012, 30, 3023–3038. [Google Scholar]
- Simi, I.; Stani, I.; Zirni, B. Minimax LS algorithm for automatic propagation model tuning. In Proceedings of the 9th Telecommunications Forum (TELFOR 2001), Belgrade, Serbia, 20–22 November 2001. [Google Scholar]
- Ravindra, K.; Sarma, A.D.; Prasad, M. An adaptive polynomial path loss model at UHF frequencies for mobile railway communications. Indian J. Radio Space Phys. 2002, 31, 278–284. [Google Scholar]
- Chimaobi, N.N.; Nnadi, C.C.; Nzegwu, A.J. Comparative study of least square methods for tuning erceg pathloss model. Am. J. Softw. Eng. Appl. 2017, 6, 61–66. [Google Scholar]
- Nadir, Z. Empirical pathloss characterization for Oman. In Proceedings of the 2012 Computing, Communications and Applications Conference, Hong Kong, China, 11–13 January 2012; pp. 133–137. [Google Scholar] [CrossRef]
- Nadir, Z.; Ahmad, M.I. Pathloss determination using Okumura-Hata model and cubic regression for missing data for Oman. In Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, IMECS 2010, Kowloon, Hong Kong, 17–19 March 2010; Volume 2, pp. 804–807. [Google Scholar]
- Ferreira, G.P.; Matos, L.J.; Silva, J.M. Improvement of outdoor signal strength prediction in UHF band by artificial neural network. IEEE Trans. Antennas Propag. 2016, 64, 5404–5410. [Google Scholar] [CrossRef]
- Isabona, J.; Srivastava, V.M. Coverage and Link Quality Trends in Suburban Mobile Broadband HSPA Network Environments. Wirel. Pers. Commun. 2017, 95, 3955–3968. [Google Scholar] [CrossRef]
- Wen, Y.-W.; Tsai, Y.-W.; Wu, D.B.-C.; Chen, P.-F. The impact of outliers on net-benefit regression model in cost-effectiveness analysis. PLoS ONE 2013, 8, e65930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gad, A.M.; Qura, M.E. Regression estimation in the presence of outliers: A comparative study. Int. J. Probab. Stat. 2016, 5, 65–72. [Google Scholar]
- Mahasukhon, P.; Sharif, H.; Hempel, M.; Zhou, T.; Wang, W.; Ma, T. Propagation path loss estimation using nonlinear multi-regression approach. In Proceedings of the 2010 IEEE International Conference on Communications, Cape Town, South Africa, 23–27 May 2010; pp. 1–5. [Google Scholar]
- Isabona, J.; Imoize, A.L.; Ojo, S.; Karunwi, O.; Kim, Y.; Lee, C.-C.; Li, C.-T. Development of a Multilayer Perceptron Neural Network for Optimal Predictive Modeling in Urban Microcellular Radio Environments. Appl. Sci. 2022, 12, 5713. [Google Scholar] [CrossRef]
- Ostlin, E.; Zepernick, H.-J.; Suzuki, H. Macrocell path-loss prediction using artificial neural networks. IEEE Trans. Veh. Technol. 2010, 59, 2735–2747. [Google Scholar] [CrossRef] [Green Version]
- Popescu, I.; Nikitopoulos, D.; Constantinou, P.; Nafornita, I. ANN prediction models for outdoor environment. In Proceedings of the 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki, Finland, 11–14 September 2006; pp. 1–5. [Google Scholar]
- Oroza, C.A.; Zhang, Z.; Watteyne, T.; Glaser, S.D. A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 576–584. [Google Scholar] [CrossRef]
- Uccellari, M.; Facchini, F.; Sola, M.; Sirignano, E.; Vitetta, G.M.; Barbieri, A.; Tondelli, S. On the use of support vector machines for the prediction of propagation losses in smart metering systems. In Proceedings of the 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, Italy, 13–16 September 2016; pp. 1–6. [Google Scholar]
- Hervis Santana, Y.; Martinez Alonso, R.; Guillen Nieto, G.; Martens, L.; Joseph, W.; Plets, D. Indoor Genetic Algorithm-Based 5G Network Planning Using a Machine Learning Model for Path Loss Estimation. Appl. Sci. 2022, 12, 3923. [Google Scholar] [CrossRef]
- Jo, H.S.; Park, C.; Lee, E.; Choi, H.K.; Park, J. Path Loss Prediction based on Machine Learning Techniques: Principal Component Analysis, Artificial Neural Network and Gaussian Process. Sensors 2020, 20, 1927. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, M.; Rinaldi, F. Path loss prediction in urban environment using learning machines and dimensionality reduction techniques. Comput. Manag. Sci. 2011, 8, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Shi, D.; Gao, Y.; Yao, C. A new method for radio wave propagation prediction based on finite integral method and machine learning. In Proceedings of the 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), Beijing, China, 28–31 October 2017; pp. 1–4. [Google Scholar]
- Petković, D.; Gocic, M.; Shamshirband, S.; Qasem, S.N.; Trajkovic, S. Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration. Theor. Appl. Climatol. 2016, 125, 555–563. [Google Scholar] [CrossRef]
- Popescu, I.; Kanstas, A.; Angelou, E.; Nafornita, L.; Constantinou, P. Applications of generalized RBF-NN for path loss prediction. In Proceedings of the The 13th IEEE international symposium on personal, indoor and mobile radio communications, Lisbon, Portugal, 18 September 2002; Volume 1, pp. 484–488. [Google Scholar]
- Garah, M.; Oudira, H.; Djouane, L.; Hamdiken, N. Particle swarm optimization for the path loss reduction in suburban and rural area. Int. J. Electr. Comput. Eng. 2017, 7, 2125. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.-C.; Cheng, Y.-T.; Chang, C.-W. Comparison of particle swarm optimization and genetic algorithm for the path loss reduction in an urban area. J. Appl. Sci. Eng. 2012, 15, 371–380. [Google Scholar]
- Friis, H.T. A note on a simple transmission formula. Proc. IRE 1946, 34, 254–256. [Google Scholar] [CrossRef]
- Ebhota, V.C.; Isabona, J.; Srivastava, V.M. Modelling, simulation and analysis of signal path loss for 4G cellular network planning. J. Eng. Appl. Sci. 2018, 13, 235–240. [Google Scholar]
- Isabona, J.; Imoize, A.L.; Kim, Y. Machine Learning-Based Boosted Regression Ensemble Combined with Hyperparameter Tuning for Optimal Adaptive Learning. Sensors 2022, 22, 3776. [Google Scholar] [CrossRef]
- Bernard, S.; Heutte, L.; Adam, S. Influence of hyperparameters on random forest accuracy. In International Workshop on Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2009; pp. 171–180. [Google Scholar]
- Voulkidis, A.C.; Anastasopoulos, M.P.; Cottis, P.G. Energy efficiency in wireless sensor networks. ACM Trans. Sens. Netw. 2013, 9, 1–27. [Google Scholar] [CrossRef]
- Probst, P.; Boulesteix, A.-L. To tune or not to tune the number of trees in random forest. J. Mach. Learn. Res. 2017, 18, 6673–6690. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-international conference on neural networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Jawad, H.M.; Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Abdullah, N.F.; Ismail, M.; Abu-AlShaeer, M.J. Accurate empirical path-loss model based on particle swarm optimization for wireless sensor networks in smart agriculture. IEEE Sens. J. 2019, 20, 552–561. [Google Scholar] [CrossRef]
- Ojo, S.; Imoize, A.; Alienyi, D. Radial basis function neural network path loss prediction model for LTE networks in multitransmitter signal propagation environments. Int. J. Commun. Syst. 2021, 34, e4680. [Google Scholar] [CrossRef]
- Imoize, A.L.; Oseni, A.I. Investigation and pathloss modeling of fourth generation long term evolution network along major highways in Lagos Nigeria. Ife J. Sci. 2019, 21, 39–60. [Google Scholar] [CrossRef]
- Hata, M. Empirical Formula for Propagation Loss in Land Mobile Radio Services. IEEE Trans. Veh. Technol. 1980, 29, 317–325. [Google Scholar] [CrossRef]
- Abhayawardhana, V.S.; Wassellt, I.J.; Crosby, D.; Sellars, M.P.; Brown, M.G. Comparison of empirical propagation path loss models for fixed wireless access systems. In Proceedings of the IEEE Vehicular Technology Conference, Stockholm, Sweden, 30 May–1 June 2005; Volume 61, pp. 73–77. [Google Scholar]
- Castro, B.S.; Pinheiro, M.R.; Cavalcante, G.P.; Gomes, I.R.; Carneiro, O.D.O. Comparison between known propagation models using least squares tuning algorithm on 5.8 GHz in Amazon region cities. J. Microwaves Optoelectron. 2011, 10, 106–113. [Google Scholar] [CrossRef]
- Akhpashev, R.V.; Andreev, A.V. COST 231 Hata adaptation model for urban conditions in LTE networks. In Proceedings of the 2016 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol, Russia, 30 June–4 July 2016; pp. 64–66. [Google Scholar]
- Drozdova, V.G.; Akhpashev, R.V. Ordinary least squares in COST 231 Hata key parameters optimization base on experimental data. In Proceedings of the 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), Novosibirsk, Russia, 18–22 September 2017; pp. 236–238. [Google Scholar] [CrossRef]
- Popoola, S.I.; Atayero, A.A.; Popoola, O.A. Comparative assessment of data obtained using empirical models for path loss predictions in a university campus environment. Data Br. 2018, 18, 380–393. [Google Scholar] [CrossRef] [PubMed]
- ITU-R, Guidelines for Evaluation of Radio Interface Technologies for IMT-2020, Rep. ITU, pp. 2410–2412, 2017, [Online]. Available online: https://extranet.itu.int/brdocsearch/R-REP/R-REP-M/R-REP-M.2412/R-REP-M.2412-2017/R-REP-M.2412-2017-PDF-E.pdf (accessed on 6 November 2022).
- Broomhead, D.S.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; Royal Signals and Radar Establishment Malvern: London, UK, 1988. [Google Scholar]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Surajudeen-Bakinde, N.T.; Faruk, N.; Popoola, S.I.; Salman, M.A.; Oloyede, A.A.; Olawoyin, L.A.; Calafate, C.T. Path loss predictions for multi-transmitter radio propagation in VHF bands using Adaptive Neuro-Fuzzy Inference System. Eng. Sci. Technol. Int. J. 2018, 21, 679–691. [Google Scholar] [CrossRef]
- Cheerla, S.; Venkata Ratnam, D.; Dabbakuti, J.R.K.K. An Optimized Path Loss Model for Urban Wireless Channels. In Microelectronics, Electromagnetics and Telecommunications; Chowdary, P.S.R., Chakravarthy, V.V.S.S.S., Anguera, J., Satapathy, S.C., Bhateja, V., Eds.; Springer: Singapore, 2021; pp. 293–301. [Google Scholar]
- Keawbunsong, P.; Duangsuwan, S.; Supanakoon, P.; Promwong, S. Quantitative Measurement of Path Loss Model Adaptation Using the Least Squares Method in an Urban DVB-T2 System. Int. J. Antennas Propag. 2018, 2018, 7219618. [Google Scholar] [CrossRef]
BTS LAT. | BTS LONG. | CELL ID | DIST. (m) | RSRP | RSRP LAT. | RSRP LONG. | FREQ. (MHz) | ALT (m) | Path Loss (dB) |
---|---|---|---|---|---|---|---|---|---|
6.2497 | 6.2022 | 297 | 100 | −82.5 | 6.2504 | 6.2028 | 2600 | 170 | 81.3000 |
6.2497 | 6.2022 | 297 | 120 | −68.81 | 6.2506 | 6.2028 | 2600 | 169 | 82.3300 |
6.2497 | 6.2022 | 297 | 140 | −70.19 | 6.2508 | 6.2028 | 2600 | 169 | 97.5000 |
6.2497 | 6.2022 | 297 | 160 | −89.25 | 6.2509 | 6.2028 | 2600 | 169 | 83.8100 |
6.2497 | 6.2022 | 297 | 180 | −75.75 | 6.2512 | 6.2028 | 2600 | 169 | 85.1900 |
6.2497 | 6.2022 | 297 | 200 | −70.44 | 6.2515 | 6.2029 | 2600 | 169 | 104.2500 |
Location | Site | RF-PS | PS | RBF-PS |
---|---|---|---|---|
Asaba | 1 | 2.62 | 3.71 | 3.35 |
2 | 3.39 | 4.47 | 4.45 | |
3 | 3.62 | 4.79 | 4.80 | |
Onitsha | 1 | 1.83 | 2.13 | 2.13 |
2 | 2.25 | 3.63 | 3.61 | |
3 | 2.82 | 3.00 | 3.03 | |
Awka | 1 | 1.71 | 2.82 | 2.82 |
2 | 2.53 | 4.66 | 4.40 | |
3 | 3.07 | 4.02 | 4.02 | |
Agbor | 1 | 3.16 | 3.68 | 3.68 |
2 | 2.83 | 4.97 | 4.97 | |
3 | 3.64 | 4.24 | 4.24 |
Locations | Proposed Hybrid RF-PS Model Coefficients | Standard PS Model Coefficients | Standard Hybrid RBF-PS Model Coefficients | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | a1 | a2 | a3 | a1 | a2 | a3 | a1 | a2 | a3 |
Asaba 1 | 831.05 | 21.53 | −217.29 | −102.01 | 45.19 | 305.01 | −339.69 | 6.63 | 136.94 |
Asaba 2 | 502.79 | 22.54 | −123.06 | −1484.23 | 19.07 | 462.73 | −351.37 | 22.01 | 128.70 |
Asaba 3 | 78.16 | 22.94 | 1.09 | 1288.98 | 25.43 | −355.39 | 2201.98 | 23.23 | 621.04 |
Average | 470.66 | 22.37 | −113.08 | −406.09 | 29.90 | 137.45 | 503.64 | 17.29 | 18.47 |
Onitsha 1 | −235.18 | 39.37 | 87.14 | −497.57 | 39.70 | 157.86 | 1612.03 | 40.01 | 460.11 |
Onitsha 2 | 13.22 | 27.66 | −19.47 | 1341.66 | 24.50 | 369.47 | 1341.66 | 24.50 | −369.47 |
Onitsha 3 | 838.77 | 27.66 | 218.94 | 396.71 | 20.78 | 91.01 | −184.69 | 20.99 | 79.10 |
Average | 198.77 | 27.66 | −47.44 | 413.60 | 28.33 | −100.95 | 923.00 | 28.25 | 56.58 |
Awka 1 | −2631 | 27.62 | 790.42 | −175.93 | 27.40 | 71.52 | 1763.98 | 27.40 | 496.53 |
Awka 2 | −3083.70 | 37.91 | 914.77 | 1525.23 | 22.74 | −422.83 | 796.39 | 26.60 | −212.45 |
Awka 3 | −330.19 | 30.95 | 113.61 | −676.16 | 32.12 | 214.00 | −6062.90 | 31.80 | 1791.65 |
Average | −2015.31 | 31.98 | 606.27 | 224.38 | 27.42 | −45.77 | −1177.51 | 28.60 | −360.88 |
Agbor 1 | 720.85 | 25.11 | −188.97 | −234.84 | 28.26 | 88.47 | 380.36 | 28.19 | −91.62 |
Agbor 2 | 1048.86 | 21.39 | −281.93 | −690.41 | 28.13 | 222.19 | −780.89 | 28.13 | 248.69 |
Agbor 3 | −286.99 | 19.80 | 111.53 | −842.39 | 21.53 | 272.82 | −1196.57 | 21.49 | 376.57 |
Average | 494.24 | 22.10 | −119.61 | −604.47 | 25.97 | 195.83 | −532.37 | 25.94 | 177.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omasheye, O.R.; Azi, S.; Isabona, J.; Imoize, A.L.; Li, C.-T.; Lee, C.-C. Joint Random Forest and Particle Swarm Optimization for Predictive Pathloss Modeling of Wireless Signals from Cellular Networks. Future Internet 2022, 14, 373. https://doi.org/10.3390/fi14120373
Omasheye OR, Azi S, Isabona J, Imoize AL, Li C-T, Lee C-C. Joint Random Forest and Particle Swarm Optimization for Predictive Pathloss Modeling of Wireless Signals from Cellular Networks. Future Internet. 2022; 14(12):373. https://doi.org/10.3390/fi14120373
Chicago/Turabian StyleOmasheye, Okiemute Roberts, Samuel Azi, Joseph Isabona, Agbotiname Lucky Imoize, Chun-Ta Li, and Cheng-Chi Lee. 2022. "Joint Random Forest and Particle Swarm Optimization for Predictive Pathloss Modeling of Wireless Signals from Cellular Networks" Future Internet 14, no. 12: 373. https://doi.org/10.3390/fi14120373
APA StyleOmasheye, O. R., Azi, S., Isabona, J., Imoize, A. L., Li, C. -T., & Lee, C. -C. (2022). Joint Random Forest and Particle Swarm Optimization for Predictive Pathloss Modeling of Wireless Signals from Cellular Networks. Future Internet, 14(12), 373. https://doi.org/10.3390/fi14120373