Double-Multiple Streamtube Analysis of a Flexible Vertical Axis Wind Turbine
Abstract
:1. Introduction
2. Methodology
2.1. Double Multiple Stream Tube Modeling
2.1.1. Computation of Power Coefficient,
2.1.2. Arm Drag Corrections
3. Data Acquisition
3.1. Preparation of Airfoils
3.2. Apparatus
3.3. Data Extrapolation
3.4. Data Correction
4. Validation
4.1. Streamtube Independence Tests
4.2. Experimental Validation
5. Result and Discussion
5.1. Wind Tunnel Tests
5.2. DMST Results
6. Conclusions
- Flexible blades have been shown to perform better at high solidity (smaller radius) than rigid ones, at least, for the range of operational conditions possible with wind tunnel data generated herein.
- The operational range () that is, the range of tip-speed ratios where the turbine is expected to produce positive power, is greatly enhanced with the flexible-bladed design. In fact, the maximum operational range was found to be only around 7.2 for the rigid bladed simulations and 9.7 for the flexible-bladed simulations when the turbine radius is 1.5m. This suggests that is may be possible to increase operational tip-speed ratios by at least 40.3% by using flexible-bladed VAWTs.
- The power coefficient or efficiency of the flexible VAWTs was much higher for smaller turbine radius. In fact, for a radius of 1.0m, the rigid VAWT is simulated to have a maximum power coefficient of around only 10%, compared to 18.9% for the flexible VAWT. This results in an astounding 90% increase in efficiency.
- The flexible-bladed VAWTs generally experiences less drastic changes in normal force than rigid, which may contribute to less fatigue over the lifetime of the turbine.
Author Contributions
Funding
Conflicts of Interest
References
- BloombergNEF. Clean Energy Investment Trends, 2019; Bloomberg Finance L.P.: New York City, NY, USA, 2020. [Google Scholar]
- Fried, L. Global Wind Report; Global Wind Energy Council: Brussels, Belgium, 2018. [Google Scholar]
- Roy, L.; MacPhee, D. Meso-Scale CFD Simulation for Wind Resources: A Case Study of Complex Mountainous Terrain. Energies 2018, 11, 1366. [Google Scholar] [CrossRef] [Green Version]
- IRENA. Renewable Power Generation Costs in 2019; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Timmer, J. Wind Power Prices Now Lower than the Cost of Natural Gas; ArsTechnica: New York City, NY, USA, 2019. [Google Scholar]
- Letcher, T.M. Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- MacPhee, D.; Beyene, A. Recent advances design of vertical axis wind turbines. Wind Eng. 2012, 36, 647–665. [Google Scholar] [CrossRef]
- Jacobson, R. Where Do Wind Turbines Go to Die? Inside Energy: Denver, CO, USA, 2016. [Google Scholar]
- Veers, P. Fatigue loading of wind turbines. In Wind Energy Systems; Elsevier: Amsterdam, The Netherlands, 2011; pp. 130–158. [Google Scholar]
- Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K. Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renew. Energy 2015, 75, 50–67. [Google Scholar] [CrossRef]
- Marinić-Kragić, I.; Vučina, D.; Milas, Z. Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization. Energy 2019, 167, 841–852. [Google Scholar] [CrossRef]
- Bhutta, M.M.A.; Hayat, N.; Farooq, A.U.; Ali, Z.; Jamil, S.R.; Hussain, Z. Vertical axis wind turbine—A review of various configurations and design techniques. Renew. Sustain. Energy Rev. 2012, 16, 1926–1939. [Google Scholar] [CrossRef]
- Kumar, R.; Raahemifar, K.; Fung, A.S. A critical review of vertical axis wind turbines for urban applications. Renew. Sustain. Energy Rev. 2018, 89, 281–291. [Google Scholar] [CrossRef]
- Amano, R.S. Review of wind turbine research in 21st century. J. Energy Resour. Technol. 2017, 139, 050801. [Google Scholar] [CrossRef]
- Scheurich, F.; Fletcher, T.M.; Brown, R.E. Simulating the aerodynamic performance and wake dynamics of a vertical-axis wind turbine. Wind Energy 2011, 14, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.R. Wind Energy Technology; Taylor & Francis: Abingdon, UK, 2011. [Google Scholar]
- Galinos, C.; Larsen, T.J.; Madsen, H.A.; Paulsen, U.S. Vertical axis wind turbine design load cases investigation and comparison with horizontal axis wind turbine. Energy Procedia 2016, 94, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Scheurich, F.; Fletcher, T.; Brown, R. The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine. In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010; p. 1579. [Google Scholar]
- Douak, M.; Aouachria, Z.; Rabehi, R.; Allam, N. Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine. Renew. Sustain. Energy Rev. 2018, 81, 1602–1610. [Google Scholar] [CrossRef]
- Du, L.; Ingram, G.; Dominy, R.G. Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance. Energy Sci. Eng. 2019, 7, 2421–2436. [Google Scholar] [CrossRef] [Green Version]
- Ostos, I.; Ruiz, I.; Gajic, M.; Gómez, W.; Bonilla, A.; Collazos, C. A modified novel blade configuration proposal for a more efficient VAWT using CFD tools. Energy Convers. Manag. 2019, 180, 733–746. [Google Scholar] [CrossRef]
- Tian, W.; Mao, Z.; Ding, H. Numerical study of a passive-pitch shield for the efficiency improvement of vertical axis wind turbines. Energy Convers. Manag. 2019, 183, 732–745. [Google Scholar] [CrossRef]
- Mohamed, M. Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 2012, 47, 522–530. [Google Scholar] [CrossRef]
- Danao, L.A.; Qin, N.; Howell, R. A numerical study of blade thickness and camber effects on vertical axis wind turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 2012, 226, 867–881. [Google Scholar] [CrossRef]
- Subramanian, A.; Yogesh, S.A.; Sivanandan, H.; Giri, A.; Vasudevan, M.; Mugundhan, V.; Velamati, R.K. Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 2017, 133, 179–190. [Google Scholar] [CrossRef]
- Glauert, H. The Handley Page Slotted Wing; HM Stationery Office: London, UK, 1922. [Google Scholar]
- Xiao, Q.; Liu, W.; Incecik, A. Flow control for VATT by fixed and oscillating flap. Renew. Energy 2013, 51, 141–152. [Google Scholar] [CrossRef]
- Chougule, P.D.; Rosendahl, L.; Nielsen, S.R. Experimental study of the effect of a slat angle on double-element airfoil and application in vertical axis wind turbine. Ships Offshore Struct. 2015, 10, 176–182. [Google Scholar] [CrossRef]
- Smith, A.O. High-lift aerodynamics. J. Aircr. 1975, 12, 501–530. [Google Scholar] [CrossRef] [Green Version]
- Paraschivoiu, I.; Trifu, O.; Saeed, F. H-Darrieus wind turbine with blade pitch control. Int. J. Rotating Mach. 2009, 2009, 505343. [Google Scholar] [CrossRef] [Green Version]
- Bos, R. Self-Starting of Small Urban Darrieus Rotor. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2012. [Google Scholar]
- Kincaid, K.C.; MacPhee, D.W. Numerical Fluid—Structure Interaction Analysis of a Wells Turbine With Flexible Blades. J. Energy Resour. Technol. 2020, 142, 081305. [Google Scholar] [CrossRef]
- MacPhee, D.W.; Beyene, A. Performance analysis of a small wind turbine equipped with flexible blades. Renew. Energy 2019, 132, 497–508. [Google Scholar] [CrossRef]
- MacPhee, D.W.; Beyene, A. Fluid–Structure interaction analysis of a morphing vertical axis wind turbine. J. Fluids Struct. 2016, 60, 143–159. [Google Scholar] [CrossRef]
- Hoogedoorn, E.; Jacobs, G.B.; Beyene, A. Aero-elastic behavior of a flexible blade for wind turbine application: A 2D computational study. Energy 2010, 35, 778–785. [Google Scholar] [CrossRef]
- Butbul, J.; MacPhee, D.; Beyene, A. The impact of inertial forces on morphing wind turbine blade in vertical axis configuration. Energy Convers. Manag. 2015, 91, 54–62. [Google Scholar] [CrossRef]
- Hirsch, I.H.; Mandal, A. A cascade theory for the aerodynamic performance of Darrieus wind turbines. Wind Eng. 1987, 11, 164–175. [Google Scholar]
- Strickland, J.H.; Webster, B.T.; Nguyen, T. A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study. J. Fluids Eng. 1979, 101, 500–505. [Google Scholar] [CrossRef]
- Dixon, K.; Simao Ferreira, C.; Hofemann, C.; Van Bussel, G.; Van Kuik, G. A 3D unsteady panel method for vertical axis wind turbines. In The Proceedings of the European Wind Energy Conference & Exhibition EWEC Brussels; European Wind Energy Association EWEA: Brussels, Belgium, 2008; pp. 1–10. [Google Scholar]
- Xu, Y.L.; He, J. Smart Civil Structures; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Badshah, M.; Badshah, S.; Jan, S. Comparison of computational fluid dynamics and fluid structure interaction models for the performance prediction of tidal current turbines. J. Ocean. Eng. Sci. 2020, 5, 164–172. [Google Scholar] [CrossRef]
- Moghimi, M.; Motawej, H. Developed DMST model for performance analysis and parametric evaluation of Gorlov vertical axis wind turbines. Sustain. Energy Technol. Assess. 2020, 37, 100616. [Google Scholar] [CrossRef]
- Paraschivoiu, I. Wind Turbine Design: With Emphasis on Darrieus Concept; Polytechnic International Press: Montréal, QC, Canada, 2002. [Google Scholar]
- Beri, H.; Yao, Y. Double Multiple Streamtube Model and Numerical Analysis of Vertical Axis Wind Turbine. Energy Power Eng. 2011, 3, 262. [Google Scholar] [CrossRef] [Green Version]
- Paraschivoiu, I. Double-Multiple Streamtube Model for Darrieus in Turbines; Hydro-Québec Research Institute: Montréal, QC, Canada, 1981. [Google Scholar]
- Attia, E.A.; Saber, H.; El Gamal, H. Performance and dynamic characteristics of a multi stages vertical axis wind turbine. J. Vibroeng. 2016, 18, 4015–4032. [Google Scholar] [CrossRef]
- Ayala, M.; Maldonado, J.; Paccha, E.; Riba, C. Wind power resource assessment in complex terrain: Villonaco case-study using computational fluid dynamics analysis. Energy Procedia 2017, 107, 41–48. [Google Scholar] [CrossRef]
- Glauert, H. Aerodynamic theory. Aeronaut. J. 1930, 34, 409–414. [Google Scholar] [CrossRef]
- Islam, M. Analysis of Fixed-Pitch Straight-Bladed VAWT with Asymmetric Airfoils. Ph.D. Thesis, University of Windsor, Windsor, ON, Canada, 2008. [Google Scholar]
- Viterna, L.A.; Janetzke, D.C. Theoretical and Experimental Power from Large Horizontal-Axis Wind Turbines; Technical Report; National Aeronautics and Space Administration: Cleveland, OH, USA, 1982.
- Montgomerie, B. Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to ±180 deg, with Application to Aerodynamics for Blades on Wind Turbines and Propellers; Report No. FOI; FOI, Swedish Defence Research Agency: Stockholm, Sweden, 2004.
- Kirke, B.K. Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications. Ph.D. Thesis, Griffith University Australia, Brisbane, Australia, 1998. [Google Scholar]
- Beans, E.W.; Jakubowski, G.S. Method for estimating the aerodynamic coefficients of wind turbine blades at high angles of attack. J. Energy 1983, 7, 747–749. [Google Scholar] [CrossRef]
- Bianchini, A.; Balduzzi, F.; Rainbird, J.M.; Peiro, J.; Graham, J.M.R.; Ferrara, G.; Ferrari, L. An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines—Part II: Post-Stall Data Extrapolation Methods. J. Eng. Gas Turbines Power 2016, 138, 032603. [Google Scholar] [CrossRef]
- Mahmuddin, F.; Klara, S.; Sitepu, H.; Hariyanto, S. Airfoil lift and drag extrapolation with viterna and montgomerie methods. Energy Procedia 2017, 105, 811–816. [Google Scholar] [CrossRef]
- Klimes, R.; Sheldahl, P. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180 Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; Sandia National Laboratories: Albuquerque, NM, USA, 1981. [Google Scholar]
- Kashitani, M.; Miura, K.; Nakao, S.; Yamaguchi, Y. Effects of aspect ratio in a transonic shock tube airfoil flow. J. Therm. Sci. 2012, 21, 435–440. [Google Scholar] [CrossRef]
- Thom, A. Blockage Corrections in a Closed High-Speed Tunnel; ARC R&M No. 2033; Aeronautical Research Council: UK, 1943. [Google Scholar]
- Barlow, J.B.; Rae, J.W.H.; Pope, A. Low-Speed Wind Tunnel Testing; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Pope, A.; Harper, J.J. Low Speed Wind Tunnel Testing; John Wiley and Sons: New York, NY, USA, 1966. [Google Scholar]
- Kjellin, J.; Bülow, F.; Eriksson, S.; Deglaire, P.; Leijon, M.; Bernhoff, H. Power coefficient measurement on a 12 kW straight bladed vertical axis wind turbine. Renew. Energy 2011, 36, 3050–3053. [Google Scholar] [CrossRef]
- MacPhee, D.; Beyene, A. Fluid–structure interaction of a morphing symmetrical wind turbine blade subjected to variable load. Int. J. Energy Res. 2013, 37, 69–79. [Google Scholar] [CrossRef]
- Ahmadi-Baloutaki, M.; Carriveau, R.; Ting, D.S. Straight-bladed vertical axis wind turbi design guide based on aerodynamic performance and loading analysis. Proc. Inst. Mech. Eng. Part A J. Power Energy 2014, 228, 742–759. [Google Scholar] [CrossRef]
- Templin, R. Aerodynamic Performance Theory for the NRC Vertical-Axis Wind Turbine; NASA STI/RECON Technical Report No. N; National Aeronautical Establishment: Ottawa, ON, Canada, 1974; Volume 76. [Google Scholar]
Properties | Value |
---|---|
density | 1050 kg/m3 |
poisson ratio | 0.45 |
elastic modulus | 0.4 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, L.; Kincaid, K.; Mahmud, R.; MacPhee, D.W. Double-Multiple Streamtube Analysis of a Flexible Vertical Axis Wind Turbine. Fluids 2021, 6, 118. https://doi.org/10.3390/fluids6030118
Roy L, Kincaid K, Mahmud R, MacPhee DW. Double-Multiple Streamtube Analysis of a Flexible Vertical Axis Wind Turbine. Fluids. 2021; 6(3):118. https://doi.org/10.3390/fluids6030118
Chicago/Turabian StyleRoy, Lalit, Kellis Kincaid, Roohany Mahmud, and David W. MacPhee. 2021. "Double-Multiple Streamtube Analysis of a Flexible Vertical Axis Wind Turbine" Fluids 6, no. 3: 118. https://doi.org/10.3390/fluids6030118
APA StyleRoy, L., Kincaid, K., Mahmud, R., & MacPhee, D. W. (2021). Double-Multiple Streamtube Analysis of a Flexible Vertical Axis Wind Turbine. Fluids, 6(3), 118. https://doi.org/10.3390/fluids6030118