Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Setting
2.2. Study Design
2.3. Data Sources and Outcomes of the Study
2.4. Operational Definitions
2.5. Spatial Analysis
3. Results
3.1. Factors at Socio-Ecological Level Associated with the Spatial Distribution of TB and Undernutrition Prevalence
3.2. Geospatial Distribution of Undernutrition and TB Prevalence in Ethiopia
3.3. Spatial Overlap of Undernutrition and TB Prevalence
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
EDHS | Ethiopian Demographic and Health Survey |
GPS | Global Positioning System |
HIV | Human Immunodeficiency Virus |
MCMC | Markov Chain Monte Carlo (MCMC) |
LMICs | Low- and Middle-Income countries |
SSA | Sub-Saharan Africa |
TB | Tuberculosis |
WAIC | Watanabe–Akaike Applicable Information Criterion |
WHO | World Health Organisation |
References
- WHO. The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets; Food & Agriculture Org.: Rome, Italy, 2020. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World; FAO: Rome, Italy, 2022. [Google Scholar]
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition; Food & Agriculture Org.: Rome, Italy, 2018. [Google Scholar]
- FMOH. Guidelines for Management of TB, DR-TB and Leprosy in Ethiopia; Federal Ministry of Health: Addis Ababa, Ethiopia, 2017. [Google Scholar]
- Dargie, B.; Tesfaye, G.; Worku, A. Prevalence and associated factors of undernutrition among adult tuberculosis patients in some selected public health facilities of Addis Ababa, Ethiopia: A cross-sectional study. BMC Nutr. 2016, 2, 7. [Google Scholar] [CrossRef]
- Wassie, M.; Shamil, F.; Worku, A. Weight Gain and associated factors among Adult Tuberculosis Patients on treatment in northwest ethiopia: A longitudinal study. J. Nutr. Disorders Ther. 2014, 4, 2. [Google Scholar] [CrossRef]
- Phan, M.N.; Guy, E.S.; Nickson, R.N.; Kao, C.C. Predictors and patterns of weight gain during treatment for tuberculosis in the United States of America. Int. J. Infect. Dis. 2016, 53, 1–5. [Google Scholar] [CrossRef]
- Lönnroth, K.; Williams, B.G.; Cegielski, P.; Dye, C. A consistent log-linear relationship between tuberculosis incidence and body mass index. Int. J. Epidemiol. 2010, 39, 149–155. [Google Scholar] [CrossRef]
- Kant, S.; Gupta, H.; Ahluwalia, S. Significance of nutrition in pulmonary tuberculosis. Crit. Rev. Food Sci. Nutr. 2015, 55, 955–963. [Google Scholar] [CrossRef]
- FMOH. Participant Manual for the Basic Chronic HIV Care, Antiretroviral Therapy and Prevention in Ethiopia; Federal Ministry of Health: Addis Ababa, Ethiopia, 2008. [Google Scholar]
- Bhargava, A.; Benedetti, A.; Oxlade, O.; Pai, M.; Menzies, D. Undernutrition and the incidence of tuberculosis in India: National and subnational estimates of the population attributable fraction related to undernutrition. Natl. Med. J. India 2014, 27, 128–133. [Google Scholar]
- Bhargava, A.; Bhargava, M.; Beneditti, A.; Kurpad, A. Attributable is preventable: Corrected and revised estimates of population attributable fraction of TB related to undernutrition in 30 high TB burden countries. J. Clin. Tuberc. Other Mycobact. Dis. 2022, 27, 100309. [Google Scholar] [CrossRef]
- Hoyt, K.J.; Sarkar, S.; White, L.; Joseph, N.M.; Salgame, P.; Lakshminarayanan, S.; Muthaiah, M.; Vinod Kumar, S.; Ellner, J.J.; Roy, G. Effect of malnutrition on radiographic findings and mycobacterial burden in pulmonary tuberculosis. PLoS ONE 2019, 14, e0214011. [Google Scholar] [CrossRef]
- Ter Beek, L.; Alffenaar, J.-W.C.; Bolhuis, M.S.; van der Werf, T.S.; Akkerman, O.W. Tuberculosis-related malnutrition: Public health implications. J. Infect. Dis. 2019, 220, 340–341. [Google Scholar] [CrossRef]
- Sinha, P.; Davis, J.; Saag, L.; Wanke, C.; Salgame, P.; Mesick, J.; Horsburgh, C.R., Jr.; Hochberg, N.S. Undernutrition and tuberculosis: Public health implications. J. Infect. Dis. 2019, 219, 1356–1363. [Google Scholar] [CrossRef]
- WHO. Implementing the End TB Strategy: The Essentials; WHO: Geneva, Switzerland, 2015; Report No.: 9241509937. [Google Scholar]
- Hargreaves, J.R.; Boccia, D.; Evans, C.A.; Adato, M.; Petticrew, M.; Porter, J.D. The social determinants of tuberculosis: From evidence to action. Am. J. Public Health 2011, 101, 654–662. [Google Scholar] [CrossRef]
- WHO. Guideline: Nutritional Care and Support for Patients with Tuberculosis; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Clements, A.C.; Deville, M.A.; Ndayishimiye, O.; Brooker, S.; Fenwick, A. Spatial co-distribution of neglected tropical diseases in the East African Great Lakes region: Revisiting the justification for integrated control. Trop. Med. Int. Health 2010, 15, 198–207. [Google Scholar] [CrossRef]
- Brooker, S.; Clements, A.C.; Hotez, P.J.; Hay, S.I.; Tatem, A.J.; Bundy, D.A.; Snow, R.W. The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren. Malar. J. 2006, 5, 99. [Google Scholar] [CrossRef]
- Alene, K.A.; Elagali, A.; Barth, D.D.; Rumisha, S.F.; Amratia, P.; Weiss, D.J.; Atalell, K.A.; Erena, A.K.; Gething, P.W.; Clements, A.C. Spatial codistribution of HIV, tuberculosis and malaria in Ethiopia. BMJ Glob. Health 2022, 7, e007599. [Google Scholar] [CrossRef]
- Brooker, S.; Utzinger, J. Integrated disease mapping in a polyparasitic world. Geospat. Health 2007, 1, 141–146. [Google Scholar] [CrossRef]
- Utzinger, J.; Raso, G.; Brooker, S.; De Savigny, D.; Tanner, M.; Ørnbjerg, N.; Singer, B.; N’goran, E. Schistosomiasis and neglected tropical diseases: Towards integrated and sustainable control and a word of caution. Parasitology 2009, 136, 1859–1874. [Google Scholar] [CrossRef]
- Bhargava, A.; Bhargava, M.; Juneja, A. Social determinants of tuberculosis: Context, framework, and the way forward to ending TB in India. Expert Rev. Respir. Med. 2021, 15, 867–883. [Google Scholar] [CrossRef]
- Rodrigues, A.L., Jr.; Ruffino-Netto, A.; Castilho, E.A.D. Spatial distribution of M. tuberculosis-HIV coinfection in São Paulo State, Brazil, 1991–2001. Rev. Saúde Pública 2006, 40, 265–270. [Google Scholar] [CrossRef]
- Fenn, B.; Morris, S.S.; Black, R.E. Comorbidity in childhood in northern Ghana: Magnitude, associated factors, and impact on mortality. Int. J. Epidemiol. 2005, 34, 368–375. [Google Scholar] [CrossRef]
- Raso, G.; Vounatsou, P.; Singer, B.H.; Eliézer, K.; Tanner, M.; Utzinger, J. An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni–hookworm coinfection. Proc. Natl. Acad. Sci. USA 2006, 103, 6934–6939. [Google Scholar] [CrossRef]
- Muse, A.I.; Osman, M.O.; Ibrahim, A.M.; Wedajo, G.T.; Daud, F.I.; Abate, K.H. Undernutrition and Associated Factors Among Adult Tuberculosis Patients in Jigjiga Public Health Facilities, Somali Region, East, Ethiopia. Res. Rep. Trop. Med. 2021, 12, 123. [Google Scholar] [CrossRef]
- Hussien, B.; Ameni, G. A Cross-sectional Study on the Magnitude of undernutrition in Tuberculosis Patients in the Oromia Region of Ethiopia. J. Multidiscip. Healthc. 2021, 14, 2421. [Google Scholar] [CrossRef]
- Tesfaye Anbese, A.; Egeta, G.; Mesfin, F.; Arega Sadore, A. Determinants of Undernutrition among Adult Tuberculosis Patients Receiving Treatment in Public Health Institutions in Shashemane Town, Southern Ethiopia. J. Nutr. Metab. 2021, 2021, 1–8. [Google Scholar] [CrossRef]
- Rue, H.; Martino, S.; Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B 2009, 71, 319–392. [Google Scholar] [CrossRef]
- Central Statistical Agency (CSA) [Ethiopia]; ICF. Ethiopia Demographic and Health Survey, Addis Ababa; Central Statistical Agency: Addis Ababa, Ethiopia, 2016. [Google Scholar]
- Alene, K.A.; Wagaw, Z.A.; Clements, A.C. Mapping tuberculosis prevalence in Ethiopia: Protocol for a geospatial meta-analysis. BMJ Open 2020, 10, e034704. [Google Scholar] [CrossRef]
- Kebede, A.; Alebachew, Z.; Tsegaye, F.; Lemma, E.; Abebe, A.; Agonafir, M.; Kebede, A.; Demissie, D.; Girmachew, F.; Yaregal, Z. The first population-based national tuberculosis prevalence survey in Ethiopia, 2010–2011. Int. J. Tuberc. Lung Dis. 2014, 18, 635–639. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Weiss, D.J.; Nelson, A.; Gibson, H.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 2018, 553, 333–336. [Google Scholar] [CrossRef]
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 170004. [Google Scholar] [CrossRef]
- WHO. Child Growth Standards; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Dhami, M.V.; Ogbo, F.A.; Osuagwu, U.L.; Ugboma, Z.; Agho, K.E. Stunting and severe stunting among infants in India: Therole of delayed introduction ofcomplementary foods andcommunity and household factors. Glob. Health Action 2019, 12, 1638020. [Google Scholar] [CrossRef] [PubMed]
- Diggle, P.J.; Tawn, J.A.; Moyeed, R.A. Model-based geostatistics. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1998, 47, 299–350. [Google Scholar] [CrossRef]
- Lindgren, F.; Rue, H.; Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2011, 73, 423–498. [Google Scholar] [CrossRef]
- Alemu, Z.A.; Ahmed, A.A.; Yalew, A.W.; Birhanu, B.S. Non random distribution of child undernutrition in Ethiopia: Spatial analysis from the 2011 Ethiopia demographic and health survey. Int. J. Equity Health 2016, 15, 198. [Google Scholar] [CrossRef]
- Ali, M.S.; Alemu, T.G.; Techane, M.A.; Wubneh, C.A.; Assimamaw, N.T.; Belay, G.M.; Tamir, T.T.; Muhye, A.B.; Kassie, D.G.; Wondim, A. Spatial variation and determinants of underweight among children under 5 y of age in Ethiopia: A multilevel and spatial analysis based on data from the 2019 Ethiopian Demographic and Health Survey. Nutrition 2022, 102, 111743. [Google Scholar] [CrossRef] [PubMed]
- Azage, M.; Motbainor, A.; Nigatu, D. Exploring geographical variations and inequalities in access to improved water and sanitation in Ethiopia: Mapping and spatial analysis. Heliyon 2020, 6, e03828. [Google Scholar] [CrossRef] [PubMed]
- Gebremichael, B.; Asfaw, A. Drivers of Food Choice among Pastoral/Agro-Pastoral Community in Somali Regional State, Eastern Ethiopia. Adv. Public Health 2019, 2019, 1472487. [Google Scholar] [CrossRef]
- Ahmed, K.Y.; Agho, K.E.; Page, A.; Arora, A.; Ogbo, F.A.; Maternal, G.; Collaboration, C.H.R. Mapping Geographical Differences and Examining the Determinants of Childhood Stunting in Ethiopia: A Bayesian Geostatistical Analysis. Nutrients 2021, 13, 2104. [Google Scholar] [CrossRef]
- Seboka, B.T.; Hailegebreal, S.; Mamo, T.T.; Yehualashet, D.E.; Gilano, G.; Kabthymer, R.H.; Ewune, H.A.; Kassa, R.; Debisa, M.A.; Yawo, M.N. Spatial trends and projections of chronic malnutrition among children under 5 years of age in Ethiopia from 2011 to 2019: A geographically weighted regression analysis. J. Health Popul. Nutr. 2022, 41, 28. [Google Scholar] [CrossRef]
- Uwiringiyimana, V.; Osei, F.; Amer, S.; Veldkamp, A. Bayesian geostatistical modelling of stunting in Rwanda: Risk factors and spatially explicit residual stunting burden. BMC Public Health 2022, 22, 159. [Google Scholar] [CrossRef]
- Ahmed, K.Y.; Ross, A.G.; Hussien, S.M.; Agho, K.E.; Olusanya, B.O.; Ogbo, F.A. Mapping local variations and the determinants of childhood stunting in Nigeria. Int. J. Environ. Res. Public Health 2023, 20, 3250. [Google Scholar] [CrossRef] [PubMed]
- Meze-Hausken, E. Contrasting climate variability and meteorological drought with perceived drought and climate change in northern Ethiopia. Clim. Res. 2004, 27, 19–31. [Google Scholar] [CrossRef]
- Walls, H.; Johnston, D.; Vecchione, E.; Adam, A.; Parkhurst, J. The role of evidence in nutrition policymaking in Ethiopia: Institutional structures and issue framing. In Evidence Use in Health Policy Making; Springer: Berlin/Heidelberg, Germany, 2018; pp. 51–73. [Google Scholar]
- Ramakrishna, G.; Demeke, A. An empirical analysis of food insecurity in Ethiopia: The case of North Wello. Afr. Dev./Afr. Dev. 2002, 27, 127–143. [Google Scholar]
- Khan, S.; Gomes, J. Drought in Ethiopia: A Population Health Equity Approach to Build Resilience for the Agro-Pastoralist Community. Glob. J. Health Sci. 2019, 11, 1916–9736. [Google Scholar] [CrossRef]
- Alene, K.A.; Viney, K.; Moore, H.C.; Wagaw, M.; Clements, A.C. Spatial patterns of tuberculosis and HIV co-infection in Ethiopia. PLoS ONE 2019, 14, e0226127. [Google Scholar] [CrossRef] [PubMed]
- Alene, K.A.; Gelaw, Y.A.; Fetene, D.M.; Koye, D.N.; Melaku, Y.A.; Gesesew, H.; Birhanu, M.M.; Adane, A.A.; Muluneh, M.D.; Dachew, B.A. COVID-19 in Ethiopia: A geospatial analysis of vulnerability to infection, case severity and death. BMJ Open 2021, 11, e044606. [Google Scholar] [CrossRef] [PubMed]
- Wubuli, A.; Xue, F.; Jiang, D.; Yao, X.; Upur, H.; Wushouer, Q. Socio-demographic predictors and distribution of pulmonary tuberculosis (TB) in Xinjiang, China: A spatial analysis. PLoS ONE 2015, 10, e0144010. [Google Scholar] [CrossRef] [PubMed]
- Kolifarhood, G.; Khorasani-Zavareh, D.; Salarilak, S.; Shoghli, A.; Khosravi, N. Spatial and non-spatial determinants of successful tuberculosis treatment outcomes: An implication of Geographical Information Systems in health policy-making in a developing country. J. Epidemiol. Glob. Health 2015, 5, 221–230. [Google Scholar] [CrossRef]
- Ethiopian Public Health Institute; ICF International. Ethiopia Service Provision Assessment Plus (ESPA+) Survey 2014; ICF International: Addis Ababa, Ethiopia, 2014. [Google Scholar]
- Devereux, S. Vulnerable Livelihoods in Somali Region, Ethiopia; Institute of Development Studies Brighton: Brighton, UK, 2006. [Google Scholar]
- Derseh, N.M.; Gelaye, K.A.; Muluneh, A.G. Spatial patterns and determinants of undernutrition among late-adolescent girls in Ethiopia by using Ethiopian demographic and health surveys, 2000, 2005, 2011 and 2016: A spatial and multilevel analysis. BMC Public Health 2021, 21, 1–20. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Yaseen, M.; Saqib, S.E. Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges. Int. J. Disaster Risk Reduct. 2022, 80, 103210. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sakurai, G.; Fujimori, S.; Takahashi, K.; Hijioka, Y.; Masui, T. Extreme climate events increase risk of global food insecurity and adaptation needs. Nat. Food 2021, 2, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Woldemichael, A.; Takian, A.; Akbari Sari, A.; Olyaeemanesh, A. Availability and inequality in accessibility of health centre-based primary healthcare in Ethiopia. PLoS ONE 2019, 14, e0213896. [Google Scholar] [CrossRef]
- Widyaningsih, V.; Mulyaningsih, T.; Rahmawati, F.N.; Adhitya, D. Determinants of socioeconomic and rural–urban disparities in stunting: Evidence from Indonesia. Rural. Remote Health 2022, 22, 7082. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Baffour, B.; Richardson, A. Prevalence of child undernutrition measures and their spatio-demographic inequalities in Bangladesh: An application of multilevel Bayesian modelling. BMC Public Health 2022, 22, 1008. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhu, S.; Sunguya, B.F.; Huang, J. Urban–Rural Disparities in the Magnitude and Determinants of Stunting among Children under Five in Tanzania: Based on Tanzania Demographic and Health Surveys 1991–2016. Int. J. Environ. Res. Public Health 2021, 18, 5184. [Google Scholar] [CrossRef] [PubMed]
- Mussa, R. A matching decomposition of the rural–urban difference in malnutrition in Malawi. Health Econ. Rev. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Fotso, J.-C. Urban–rural differentials in child malnutrition: Trends and socioeconomic correlates in sub-Saharan Africa. Health Place 2007, 13, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Zegeye, B.; Adjei, N.K.; Ahinkorah, B.O.; Ameyaw, E.K.; Budu, E.; Seidu, A.-A.; Idriss-Wheeler, D.; Yaya, S. Barriers and facilitators to accessing health care services among married women in Ethiopia: A multi-level analysis of the Ethiopia demographic and health survey. Int. J. Transl. Med. Res. Public Health 2021, 5, 183–196. [Google Scholar] [CrossRef]
- Mohamed, A.A. Food security situation in Ethiopia: A review study. Int. J. Health Econ. Policy 2017, 2, 86–96. [Google Scholar]
- WHO. Primary Health Care Systems (Primasys): Case Study from Ethiopia: Abridged Version; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- CSA. Ethiopia Demographic and Health Survey Key Findings; CSA: Rockville, MD, USA; ICF: Addis Ababa, Ethiopia, 2012. [Google Scholar]
- Sebsibe, T.; Yinges, A. Urban-rural differentials in child undernutrition in Ethiopia. Int. J. Nutr. Metab. 2015, 7, 15–23. [Google Scholar] [CrossRef]
- Wamai, R.G. Reviewing Ethiopia’s health system development. Population 2004, 75, 31. [Google Scholar]
- Legesse, M.; Ameni, G.; Mamo, G.; Medhin, G.; Shawel, D.; Bjune, G.; Abebe, F. Knowledge and perception of pulmonary tuberculosis in pastoral communities in the middle and Lower Awash Valley of Afar region, Ethiopia. BMC Public Health 2010, 10, 187. [Google Scholar] [CrossRef]
- Dwyer-Lindgren, L.; Cork, M.A.; Sligar, A.; Steuben, K.M.; Wilson, K.F.; Provost, N.R.; Mayala, B.K.; VanderHeide, J.D.; Collison, M.L.; Hall, J.B. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature 2019, 570, 189–193. [Google Scholar] [CrossRef]
Variable | Definitions |
---|---|
Stunting | Nutritional status is determined by assessing the height-for-age Z-score, which falls below minus two standard deviations (-2SD) from the WHO Growth Standards median [42]. |
Underweight | Nutritional status is determined by assessing the weight-for-age Z-score, which falls below minus two standard deviations (-2SD) from the WHO Growth Standards median [42]. |
Wasting | Nutritional status is determined by assessing the weight for height Z-score, which falls below minus two standard deviations (-2SD) from the WHO Growth Standards median [42]. |
Adult undernutrition | Nutritional status based on BMI value, which is below 18.5 kg/m2 [25,36,43]. |
Covariates | Wasting | Underweight | Stunting | Adult Undernutrition | TB |
---|---|---|---|---|---|
Regression Coefficient Mean 95% CrIs | Regression Coefficient Mean 95% CrIs | Regression Coefficient Mean 95% CrIs | Regression Coefficient Mean 95% CrIs | Regression Coefficient Mean 95% CrIs | |
Temperature (°C) | −0.425(−1.012, 0.136) | −0.233(−0.706, 0.234) | 0.213(−0.239, 0.667) | −0.128(−0.464, 0.206) | −0.492(−1.41, 0.424) |
Precipitation (millimetre) | −0.136(−0.331, 0.063) | 0.035(−0.17, 0.277) | 0.149(−0.078, 0.403) | 0.012(−0.161, 0.201) | −0.206(−0.551, 0.071) |
Altitude (metre) | −0.51(−1.113, 0.065) | −0.268(−0.763, 0.216) | 0.346(−0.126, 0.815) | −0.244(−0.596, 0.104) | −0.667(−1.65, 0.323) |
Population density (people per grid cell) | −0.017(−0.032, −0.004) | −0.02 (−0.031, −0.011) | −0.012(−0.017, −0.006) | −0.007(−0.01, −0.005) | 0.008(0.001, 0.014) |
Distance to water body (kilometre) | −0.03(−0.11, 0.05) | −0.039 (−0.096, 0.018) | −0.016(−0.068, 0.036) | −0.018(−0.053, 0.015) | 0.076(−0.104, 0.252) |
Distance to a health facility (minutes) | 0.071(−0.196, 0.332) | 0.176(−0.026, 0.379) | 0.269(0.08, 0.46) | 0.176(0.044, 0.308) | −0.276(−0.866, 0.29) |
Enough food availability | −0.054(−0.169, 0.06) | −0.076(−0.169, 0.014) | −0.037(−0.126, 0.05) | −0.013(−0.078, 0.05) | 0.148(−0.028, 0.317) |
High Dietary diversity 6–23 months | −0.023(−0.183, 0.137) | 0.136(−0.008, 0.291) | 0.12(−0.019, 0.264) | - | - |
Intercept | −2.02(−2.29, −1.776) | −1.05(−1.325, −0.77) | −0.502(−0.83, −0.16) | −0.734(−1.003, −0.47) | −5.64(−6.52, −4.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagnew, F.; Alene, K.A.; Kelly, M.; Gray, D. Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia. Int. J. Environ. Res. Public Health 2023, 20, 7000. https://doi.org/10.3390/ijerph20217000
Wagnew F, Alene KA, Kelly M, Gray D. Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia. International Journal of Environmental Research and Public Health. 2023; 20(21):7000. https://doi.org/10.3390/ijerph20217000
Chicago/Turabian StyleWagnew, Fasil, Kefyalew Addis Alene, Matthew Kelly, and Darren Gray. 2023. "Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia" International Journal of Environmental Research and Public Health 20, no. 21: 7000. https://doi.org/10.3390/ijerph20217000
APA StyleWagnew, F., Alene, K. A., Kelly, M., & Gray, D. (2023). Geospatial Overlap of Undernutrition and Tuberculosis in Ethiopia. International Journal of Environmental Research and Public Health, 20(21), 7000. https://doi.org/10.3390/ijerph20217000