Using Geographically Weighted Regression to Study the Seasonal Influence of Potential Risk Factors on the Incidence of HFMD on the Chinese Mainland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Region and Data
2.2. Research Framework
2.3. Methods
2.3.1. Correlation Analysis and Multicollinearity Test
2.3.2. Spatial Autocorrelation Test
2.3.3. Geographically Weighted Regression
2.3.4. Model Evaluation
3. Results
3.1. Correlation Analysis and Multicollinearity Test
3.2. Diagnosis of Spatial Autocorrelation of the I-HFMD
3.3. Model Performance of OLR and GWR
3.4. Statistical Significance Test of the GWR Model
3.5. Seasonal and Spatial Variations of the Relationship between Potential Risk Factors and the I-HFMD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, L.; Qiu, W.; Xu, C.; Wang, J. A spatiotemporal mixed model to assess the influence of environmental and socioeconomic factors on the incidence of hand, foot and mouth disease. BMC Public Health 2018, 18, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, T.; Han, T.; Tan, X.; Zhu, S.; Yan, D.; Yang, Q.; Song, Y.; Cui, A.; Zhang, Y.; Mao, N. Surveillance, epidemiology, and pathogen spectrum of hand, foot, and mouth disease in mainland of China from 2008 to 2017. Biosaf. Health 2019, 1, 32–40. [Google Scholar] [CrossRef]
- Zhuang, D.; Hu, W.; Ren, H.; Ai, W.; Xu, X. The influences of temperature on spatiotemporal trends of hand-foot-and-mouth disease in mainland China. Int. J. Environ. Health Res. 2014, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Lawrence, W.R.; Zhang, W.; Zhang, D.; Yu, S.; Hao, Y. Interactions between climate factors and air pollution on daily HFMD cases: A time series study in Guangdong, China. Sci. Total Environ. 2019, 656, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xie, X.; Chen, X.; Li, Y.; Lu, Y.; Mei, S.; Liao, Y.; Lin, H. Short-term effects of meteorological factors on hand, foot and mouth disease among children in Shenzhen, China: Non-linearity, threshold and interaction. Sci. Total Environ. 2016, 539, 576–582. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Guo, Y.; Ou, Q.; Shen, S.; Ou, C.; Liu, Q. Short-term effects of meteorological factors on pediatric hand, foot, and mouth disease in Guangdong, China: A multi-city time-series analysis. BMC Infect. Dis. 2016, 16, 524. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; Qin, Z.; Zuo, Z.; Yu, S.; Zhang, J. Spatial-temporal mapping of hand foot and mouth disease and the long-term effects associated with climate and socio-economic variables in Sichuan Province, China from 2009 to 2013. Sci. Total Environ. 2016, 563, 152–159. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, X.; Xiao, G. Spatiotemporal decomposition and risk determinants of hand, foot and mouth disease in Henan, China. Sci. Total Environ. 2019, 657, 509–516. [Google Scholar] [CrossRef]
- Huang, X.; Wei, H.; Wu, S.; Du, Y.; Liu, L.; Su, J.; Xu, Y.; Wang, H.; Li, X.; Wang, Y. Epidemiological and etiological characteristics of hand, foot and mouth disease in Henan, China, 2008–2013. Sci. Rep. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kou, Z.; Jia, J.; Liu, X.; Luo, T.; Xin, X.; Gong, J.; Zhang, J.; Sun, D.; Jiang, F.; Gao, R. Epidemiological characteristics and spatial-temporal clusters of hand, foot, and mouth disease in Qingdao City, China, 2013-2018. PLoS ONE 2020, 15, e233914. [Google Scholar] [CrossRef]
- Kulldorff, M.; Heffernan, R.; Hartman, J.; Assunçao, R.; Mostashari, F. A space–time permutation scan statistic for disease outbreak detection. PLoS Med. 2005, 2, e59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kung, Y.; Huang, S.; Kuo, P.; Kiang, D.; Ho, M.; Liu, C.; Yu, C.; Su, I.; Wang, J. Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010, 396, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rzeżutka, A.; Cook, N. Survival of human enteric viruses in the environment and food. FEMS Microbiol. Rev. 2004, 28, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Yu, W.; Tong, S.; Jia, L.; Liang, F.; Pan, X. Non-linear association between exposure to ambient temperature and children’s hand-foot-and-mouth disease in Beijing, China. PLoS ONE 2015, 10, e126171. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Zou, H.; Wang, Q.; Liu, C.; Lang, L.; Hou, X.; Li, Z. Short-term effect of El Nino-Southern Oscillation on pediatric hand, foot and mouth disease in Shenzhen, China. PLoS ONE 2013, 8, e65585. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Chu, C.; Nguyen, H.L.T.; Nguyen, H.T.; Do, C.M.; Rutherford, S.; Phung, D. Temporal and spatial analysis of hand, foot, and mouth disease in relation to climate factors: A study in the Mekong Delta region, Vietnam. Sci. Total Environ. 2017, 581, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Bo, Z.; Ma, Y.; Chang, Z.; Zhang, T.; Liu, F.; Zhao, X.; Long, L.; Yi, X.; Xiao, X.; Li, Z. The spatial heterogeneity of the associations between relative humidity and pediatric hand, foot and mouth disease: Evidence from a nation-wide multicity study from mainland China. Sci. Total Environ. 2020, 707, 136103. [Google Scholar] [CrossRef]
- Xiao, X.; Gasparrini, A.; Huang, J.; Liao, Q.; Liu, F.; Yin, F.; Yu, H.; Li, X. The exposure-response relationship between temperature and childhood hand, foot and mouth disease: A multicity study from mainland China. Environ. Int. 2017, 100, 102–109. [Google Scholar] [CrossRef]
- Yi, S.; Wang, H.; Yang, S.; Xie, L.; Gao, Y.; Ma, C. Spatial and Temporal Characteristics of Hand-Foot-and-Mouth Disease and Its Response to Climate Factors in the Ili River Valley Region of China. Int. J. Environ. Res. Public Health 2021, 18, 1954. [Google Scholar] [CrossRef]
- Maes, M.; Meyer, F.D. Relationships of climatic data to immune and hematologic variables in normal human. Neuroendocrinol. Lett. 2000, 21, 127–136. [Google Scholar]
- Hong, Z.; Hao, H.; Li, C.; Du, W.; Wei, L.; Wang, H. Exploration of potential risks of hand, foot, and mouth disease in Inner Mongolia Autonomous Region, China using geographically weighted regression model. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Li, Z.; Wang, J.; Jia, L.; Liao, Y.; Lai, S.; Guo, Y.; Zhao, D.; Yang, W. Determinants of the incidence of hand, foot and mouth disease in China using geographically weighted regression models. PLoS ONE 2012, 7, e38978. [Google Scholar] [CrossRef] [PubMed]
- Xu, C. Spatio-temporal pattern and risk factor analysis of hand, foot and mouth disease associated with under-five morbidity in the Beijing–Tianjin–Hebei region of China. Int. J. Environ. Res. Public Health 2017, 14, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, F.; Liu, X.; Ren, X.; Liu, D.; Liu, H.; Wei, K.; Yang, X.; Cheng, Y.; Zheng, Y.; Jiang, X. Socio-ecological factors and hand, foot and mouth disease in dry climate regions: A Bayesian spatial approach in Gansu, China. Int. J. Biometeorol. 2017, 61, 137–147. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.; Christakos, G.; Yang, W.; Liao, Y.; Zhong-Jie, L.I.; Xiao-Zhou, L.I.; Lai, S.; Chen, H. Hand, foot and mouth disease: Spatiotemporal transmission and climate. Int. J. Health Geogr. 2011, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Wang, L.; de Vlas, S.J.; Liang, S.; Tong, S.; Li, Y.; Li, Y.; Qian, Q.; Yang, H.; Zhou, M. Distribution and risk factors of 2009 pandemic influenza A (H1N1) in mainland China. Am. J. Epidemiol. 2012, 175, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Liu, J. Threshold dynamics for a HFMD epidemic model with periodic transmission rate. Nonlinear Dynam. 2011, 64, 89–95. [Google Scholar] [CrossRef]
- Lai, C.; Jiang, D.; Wu, H.; Chen, H. A dynamic model for the outbreaks of hand, foot, and mouth disease in Taiwan. Epidemiol. Infection 2016, 144, 1500–1511. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Ji, H.; Shan, J.; Bao, J.; Sun, Y.; Li, J.; Bao, C.; Tang, F.; Yang, K.; Bergquist, R. Spatiotemporal dynamics of hand-foot-mouth disease and its relationship with meteorological factors in Jiangsu Province, China. PLoS ONE 2015, 10, e131311. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zhou, L.; Tan, L.; Jiang, H.; Wang, Y.; Wei, S.; Nie, S. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China. PLOS ONE 2017, 9, e98241. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Qiu, W.; Xu, C.; Wang, J. Integration of a Kalman filter in the geographically weighted regression for modeling the transmission of hand, foot and mouth disease. BMC Public Health 2020, 20, 479. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agr. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.; Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 2005, 7, 161–187. [Google Scholar] [CrossRef]
- Elliott, P.; Wartenberg, D. Spatial epidemiology: Current approaches and future challenges. Environ. Health Persp. 2004, 112, 998–1006. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. Journal of the Royal Statistical Society: Series D. Statistician 1998, 47, 431–443. [Google Scholar]
- Onozuka, D.; Hashizume, M. The influence of temperature and humidity on the incidence of hand, foot, and mouth disease in Japan. Sci. Total Environ. 2011, 410, 119–125. [Google Scholar] [CrossRef]
- Leung, Y.; Mei, C.; Zhang, W. Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environ. Plann. A 2000, 32, 9–32. [Google Scholar] [CrossRef]
- Wu, S. The theory and method of geographically and temporally neural network weighted regression. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2018. (In Chinese). [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, M.; Wang, S.; Shang, K.; Hu, L.; Dong, J. Effect of meteorological conditions on occurrence of hand, foot and mouth disease in Wuwei City, Northwestern China. In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October 2011; pp. 1893–1895. [Google Scholar]
- Dong, W.; Yang, P.; Liao, H.; Wang, X.; Wang, Q. The effects of weather factors on hand, foot and mouth disease in Beijing. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Goggins, W.B.; Chan, E.Y. Hand, foot and mouth disease in Hong Kong: A time-series analysis on its relationship with weather. PLoS ONE 2016, 11, e161006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Deng, T.; Yu, S.; Gu, J.; Huang, C.; Xiao, G.; Hao, Y. Effect of meteorological variables on the incidence of hand, foot, and mouth disease in children: A time-series analysis in Guangzhou, China. BMC Infect. Dis. 2013, 13, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Using Climate to Predict Infectious Disease Epidemics; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Wang, C.; Li, X.; Zhang, Y.; Xu, Q.; Huang, F.; Cao, K.; Tao, L.; Guo, J.; Gao, Q.; Wang, W.; et al. Spatiotemporal Cluster Patterns of Hand, Foot, and Mouth Disease at the County Level in Mainland China, 2008–2012. PLoS ONE 2016, 11, e0147532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Wang, J.; Bo, Y.; Xu, C.; Hu, M.; Huang, D. Identification of health risks of hand, foot and mouth disease in China using the geographical detector technique. Int. J. Environ. Res. Public Health 2014, 11, 3407–3423. [Google Scholar]
Variables | Data Type | Variables Name | Time Resolution | Space Resolution | Data Source | Units |
---|---|---|---|---|---|---|
Incidence of HFMD | Statistical yearbook | I-HFMD | Monthly mean | - | Public Health Science Data Center | 1/100,000 |
Temperature | Remote sensing | TEMP | Monthly mean | 1 km | National Tibetan Plateau Data Center | Celsius |
Amount of precipitation | Remote sensing | PREC | Monthly mean | 1 km | National Tibetan Plateau Data Center | milliliter |
Specific humidity | Remote sensing | HU | Monthly mean | 1 km | National Tibetan Plateau Data Center | g/kg |
Air pressure | Remote sensing | AP | Monthly mean | 1 km | National Tibetan Plateau Data Center | kPa |
Wind speed | Remote sensing | WS | Monthly mean | 1 km | National Tibetan Plateau Data Center | m/s |
Altitude | Remote sensing | ALT | All years | 0.1° | NOAA ETOPO1 Global Relief Model | m |
Children population density | Statistical yearbook | CHD | Seasonal average | - | National Bureau of Statistics of China | Person/km2 |
Real GDP per capita | Statistical yearbook | mGDP | Seasonal average | - | National Bureau of Statistics of China | Yuan/Person |
Model Name | Bandwidth Optimization Criteria | Kernel Function | |
---|---|---|---|
Type | Structure | ||
GWR-AFG | AICc | Fixed | Gaussian |
GWR-AAB | AICc | Adaptive | Bi-square |
Independent | HU | TEMP | PREC | WS | AP | ALT | CHD | mGDP | |
---|---|---|---|---|---|---|---|---|---|
Dependent | |||||||||
I-HFMD in Spring | 0.124 ** | 0.187 ** | 0.254 ** | −0.233 ** | 0.244 ** | −0.202 ** | 0.421 ** | 0.238 ** | |
I-HFMD in Summer | 0.239 ** | 0.228 ** | 0.166 ** | 0.152 * | 0.133 ** | −0.328 ** | 0.420 ** | 0.297 ** | |
I-HFMD in Autumn | 0.289 ** | 0.183 ** | 0.228 ** | 0.233 * | 0.178 ** | −0.292 ** | 0.416 ** | 0.299 ** | |
I-HFMD in Winter | 0.285 ** | 0.378 ** | 0.148 ** | −0.168 ** | 0.234 ** | −0.206 ** | 0.359 ** | 0.402 ** |
Independent | HU | TEMP | PREC | WS | AP | ALT | CHD | mGDP | |
---|---|---|---|---|---|---|---|---|---|
Dependent | |||||||||
I-HFMD in Spring | 6.045 | 5.681 | 2.547 | 2.623 | 3.927 | 3.891 | 5.036 | 1.229 | |
I-HFMD in Summer | 4.682 | 8.055 | 4.224 | 2.108 | 1.580 | 4.719 | 5.336 | 1.235 | |
I-HFMD in Autumn | 9.319 | 9.600 | 2.377 | 1.702 | 4.113 | 3.431 | 4.914 | 1.277 | |
I-HFMD in Winter | 7.936 | 9.805 | 1.965 | 1.580 | 4.150 | 3.523 | 5.959 | 1.218 |
Model | RMSE | MAE | MAPE | AICc | F1 | p-Value of F1 | Bandwidth | |
---|---|---|---|---|---|---|---|---|
OLR in Spring | 60.10% | 1.096 | 0.792 | 27.81 | 2837.6 | - | - | - |
GWR-AFG in Spring | 73.61% | 0.892 | 0.614 | 20.05 | 2598.3 | 0.72 | 0.01 | 37,0839.6 |
GWR-AAB in Spring | 75.47% | 0.856 | 0.596 | 19.54 | 2584.1 | 0.69 | 0.01 | 295.3 |
OLR in Summer | 29.09% | 0.851 | 0.656 | 5.07 | 2285.6 | - | - | - |
GWR-AFG in Summer | 62.94% | 0.615 | 0.476 | 3.21 | 1928.4 | 0.60 | 0.01 | 27,6411.9 |
GWR-AAB in Summer | 68.95% | 0.563 | 0.429 | 2.90 | 1902.5 | 0.54 | 0.01 | 146.5 |
OLR in Autumn | 39.35% | 0.841 | 0.660 | 10.06 | 2267.5 | - | - | - |
GWR-AFG in Autumn | 76.29% | 0.523 | 0.393 | 5.19 | 1690.7 | 0.46 | 0.01 | 26,1822.0 |
GWR-AAB in Autumn | 74.31% | 0.547 | 0.416 | 5.77 | 1702.8 | 0.48 | 0.01 | 262.2 |
OLR in Winter | 56.46% | 1.273 | 0.952 | 47.15 | 2979.6 | - | - | - |
GWR-AFG in Winter | 76.77% | 0.930 | 0.688 | 33.93 | 2664.3 | 0.62 | 0.01 | 30,0018.8 |
GWR-AAB in Winter | 78.04% | 0.904 | 0.674 | 33.21 | 2640.2 | 0.60 | 0.01 | 279.2 |
Season | Intercept | HU | TEMP | PREC | WS | AP | ALT | CHD | mGDP |
---|---|---|---|---|---|---|---|---|---|
Spring | 70.9% | 41.9% | 38.3% | 22.6% | 35.3% | 61.2% | 58.1% | 41.9% | 64.5% |
Summer | 41.9% | 32.3% | 3.2% | 38.7% | 45.2% | 41.9% | 31.9% | 22.6% | 48.4% |
Autumn | 87.10% | 22.6% | 25.8% | 22.6% | 48.4% | 54.8% | 31.9% | 67.7% | 64.5% |
Winter | 54.8% | 54.8% | 45.1% | 58.1% | 51.6% | 58.1% | 34.1% | 45.1% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Wu, S.; Yan, Z.; Li, Y.; Yan, C.; Zhang, F.; Liu, R.; Du, Z. Using Geographically Weighted Regression to Study the Seasonal Influence of Potential Risk Factors on the Incidence of HFMD on the Chinese Mainland. ISPRS Int. J. Geo-Inf. 2021, 10, 448. https://doi.org/10.3390/ijgi10070448
Sun J, Wu S, Yan Z, Li Y, Yan C, Zhang F, Liu R, Du Z. Using Geographically Weighted Regression to Study the Seasonal Influence of Potential Risk Factors on the Incidence of HFMD on the Chinese Mainland. ISPRS International Journal of Geo-Information. 2021; 10(7):448. https://doi.org/10.3390/ijgi10070448
Chicago/Turabian StyleSun, Jingtao, Sensen Wu, Zhen Yan, Yadong Li, Cheng Yan, Feng Zhang, Renyi Liu, and Zhenhong Du. 2021. "Using Geographically Weighted Regression to Study the Seasonal Influence of Potential Risk Factors on the Incidence of HFMD on the Chinese Mainland" ISPRS International Journal of Geo-Information 10, no. 7: 448. https://doi.org/10.3390/ijgi10070448
APA StyleSun, J., Wu, S., Yan, Z., Li, Y., Yan, C., Zhang, F., Liu, R., & Du, Z. (2021). Using Geographically Weighted Regression to Study the Seasonal Influence of Potential Risk Factors on the Incidence of HFMD on the Chinese Mainland. ISPRS International Journal of Geo-Information, 10(7), 448. https://doi.org/10.3390/ijgi10070448