A Novel Urban Tourism Path Planning Approach Based on a Multiobjective Genetic Algorithm
Abstract
:1. Introduction
1.1. Related Work
1.2. Motivation
1.3. Organization
2. Methodology
2.1. Multiobjective Evaluation of Urban Path Tourism Objectives
2.1.1. Selected Objectives
2.1.2. Evaluation Objectives
2.2. Determine the Weight of Objectives Using the Analytical Hierarchy Process (AHP)
2.3. Genetic Algorithm (GA)
2.3.1. Initial Population
2.3.2. Establish Fitness Function
2.3.3. Selection Operation
2.3.4. Crossover
2.3.5. Mutation
2.3.6. Final Condition
3. System Implementation and Experimental Analysis
4. Results and Discussion
4.1. Results
4.2. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arunmozhi, T.; Panneerselvam, A. Types of tourism in India. Int. J. Curr. Res. Acad. Rev. 2013, 1, 84–88. [Google Scholar]
- Dilmonov, K.B. Classification and types of tourism. Int. Sci. Rev. 2020, 1, 41–42. [Google Scholar]
- Muhammedrisaevna, T.M.; Mubinovna, R.F.; Kizi, M.N.U. The role of information technology in organization and management in tourism. Academy 2020, 4, 34–35. [Google Scholar]
- Sahani, N. Application of analytical hierarchy process and GIS for ecotourism potentiality mapping in Kullu District, Himachal Pradesh, India. Environ. Dev. Sustain. 2019, 22, 6187–6211. [Google Scholar] [CrossRef]
- Hoang, H.T.; Truong, Q.H.; Nguyen, A.T.; Hens, L. Multicriteria Evaluation of Tourism Potential in the Central Highlands of Vietnam: Combining Geographic Information System (GIS), Analytic Hierarchy Process (AHP) and Principal Component Analysis (PCA). Sustainability 2018, 10, 3097. [Google Scholar] [CrossRef] [Green Version]
- Vystoupil, J.; Šauer, M.; Repík, O. Quantitative Analysis of Tourism Potential in the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2017, 65, 1085–1098. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Yao, L.; Raguraman, K. Bi-level GA and GIS for Multi-objective TSP Route Planning. Transp. Plan. Technol. 2006, 29, 105–124. [Google Scholar] [CrossRef]
- Martín, J.M.; Fernández, J.A.S.; Aguilera, J.D.D.J. Assessment of the Tourism’s Potential as a Sustainable Development Instrument in Terms of Annual Stability: Application to Spanish Rural Destinations in Process of Consolidation. Sustainability 2017, 9, 1692. [Google Scholar] [CrossRef] [Green Version]
- Cergibozan, Ç.; Tasan, A.S. Tourist Route Planning with a Metaheuristic Approach. In Closing the Gap between Practice and Research in Industrial Engineering; Springer: Cham, Switzerland, 2017; pp. 193–199. [Google Scholar]
- Nestorosk, I. Identifying Tourism Potentials in Republic of Macedonia Through Regional Approach. Procedia Soc. Behav. Sci. 2012, 44, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Darabseh, F.M.; Ababneh, A.; AlMuhaisen, F. Assessing Umm el-Jimal’s Potential for Heritage Tourism. Archaeologies 2017, 13, 460–488. [Google Scholar] [CrossRef]
- Byon, Y.; Abdulhai, B.; Shalaby, A. Incorporating Scenic View, Slope, and Crime Rates into Route Choices: Emphasis on 3-D GIS with Digital Elevation Models and Crime Rate Geospatial Data. Transp. Res. Rec. J. Transp. Rev. Board 2010, 2183, 94–102. [Google Scholar] [CrossRef]
- Shafiee, S.; Rajabzadeh Ghatari, A.; Hasanzadeh, A.; Jahanyan, S. Developing a model for sustainable smart tourism destinations: A systematic review. Tour. Manag. Perspect. 2019, 31, 287–300. [Google Scholar] [CrossRef]
- Yuan, C.; Uehara, M. An Optimal Travel Route Recommendation System for Tourists’ First Visit to Japan. In Advanced Information Networking and Applications, Proceedings of the 2019 Advances in Intelligent Systems and Computing, Matsue, Japan, 27–29 March 2019; Springer: Cham, Switzerland, 2019; pp. 872–882. [Google Scholar]
- Gündling, F.; Witzel, T. Time-Dependent Tourist Tour Planning with Adjustable Profits. In Proceedings of the 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020), Pisa, Italy, 7–8 September 2020. [Google Scholar]
- LLi, R.; Leung, Y.; Huang, B.; Lin, H. A genetic algorithm for multiobjective dangerous goods route planning. Int. J. Geogr. Inf. Sci. 2013, 27, 1073–1089. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Parn, E.; Edwards, D.J. Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Baffoe, G. Exploring the utility of Analytic Hierarchy Process (AHP) in ranking livelihood activities for effective and sustainable rural development interventions in developing countries. Eval. Program Plan. 2019, 72, 197–204. [Google Scholar] [CrossRef]
- Petruni, A.; Giagloglou, E.; Douglas, E.; Geng, J.; Leva, M.C.; Demichela, M. Applying Analytic Hierarchy Process (AHP) to choose a human factors technique: Choosing the suitable Human Reliability Analysis technique for the automotive industry. Saf. Sci. 2019, 119, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Cetin, M.; Sevik, H. Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environ. Monit. Assess. 2015, 188, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Liu, M.; Wang, S.; Liu, M.; Zhang, W.; Meng, Q.; Huang, B. Spatial Multi-Objective Land Use Optimization toward Livability Based on Boundary-Based Genetic Algorithm: A Case Study in Singapore. ISPRS Int. J. Geo-Inf. 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Liu, Y.; Ouyang, Z. A machine learning-based tourist path prediction. In Proceedings of the 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS), Beijing, China, 17–19 August 2016; pp. 38–42. [Google Scholar]
- Fitriansyah, A.; Parwati, N.W.; Wardhani, D.R.; Kustian, N. Dijkstra’s Algorithm to Find Shortest Path of Tourist Destination in Bali. J. Phys. Conf. Ser. 2019, 1338, 012044. [Google Scholar] [CrossRef] [Green Version]
- Rivero, M.S.; Martín, J.M.S.; Gallego, J.I.R. Methodological approach for assessing the potential of a rural tourism destination: An application in the province of Cáceres (Spain). Curr. Issues Tour. 2014, 19, 1084–1102. [Google Scholar] [CrossRef]
- Taherdoost, H. Decision making using the analytic hierarchy process (AHP); A step by step approach. Int. J. Econ. Manag. Syst. 2017, 2, 244–246. [Google Scholar]
- Kumar, R.; Anbalagan, R. Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. J. Geol. Soc. India 2016, 87, 271–286. [Google Scholar] [CrossRef]
- Wind, Y.; Saaty, T.L. Marketing applications of the analytic hierarchy process. Manag. Sci. 1980, 26, 641–658. [Google Scholar] [CrossRef]
- Saranya, T.; Saravanan, S. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Model. Earth Syst. Environ. 2020, 6, 1105–1122. [Google Scholar] [CrossRef]
- Tahir, M.; Tubaishat, A.; Al-Obeidat, F.; Shah, B.; Halim, Z.; Waqas, M. A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare. Neural Comput. Appl. 2020, 1–22. [Google Scholar] [CrossRef]
- Karami, H.; Farzin, S.; Jahangiri, A.; Ehteram, M.; Kisi, O.; El-Shafie, A. Multi-Reservoir System Optimization Based on Hybrid Gravitational Algorithm to Minimize Water-Supply Deficiencies. Water Resour. Manag. 2019, 33, 2741–2760. [Google Scholar] [CrossRef]
- Valikhan-Anaraki, M.; Mousavi, S.-F.; Farzin, S.; Karami, H.; Ehteram, M.; Kisi, O.; Fai, C.M.; Hossain, S.; Hayder, G.; Ahmed, A.N.; et al. Development of a Novel Hybrid Optimization Algorithm for Minimizing Irrigation Deficiencies. Sustainability 2019, 11, 2337. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Muhammad, Y.S.; Sajid, M.N.; Hussain, I.; Shoukry, A.M.; Gani, S.H. Genetic Algorithm for Traveling Salesman Problem with Modified Cycle Crossover Operator. Comput. Intell. Neurosci. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, L. Applying genetic algorithm and ant colony optimization algorithm into marine investigation path planning model. Soft Comput. 2019, 24, 8199–8210. [Google Scholar] [CrossRef]
- Krajčovič, M.; Hančinský, V.; Dulina, Ľ.; Grznár, P.; Gašo, M.; Vaculík, J. Parameter Setting for a Genetic Algorithm Layout Planner as a Toll of Sustainable Manufacturing. Sustainability 2019, 11, 2083. [Google Scholar] [CrossRef] [Green Version]
- Myron, A.; Levine, B. Urban Politics: Cities and Suburbs in a Global Age, 10th ed.; Routledge: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Jeong, C.-S.; Lee, J.-Y.; Jung, K.-D. Adaptive recommendation system for tourism by personality type using deep learning. Int. J. Internet Broadcast. Commun. 2020, 12, 55–60. [Google Scholar]
- Nurov, Z.; Khamroyeva, F.; Kadirova, D. Development of domestic tourism as a priority of the economy. In Proceedings of the 2021 E-Conference Globe, New York, NY, USA, 12–16 July 2021; pp. 271–275. [Google Scholar]
- Dilrabo, T.; Shamsiddinovna, A.N. Typological Overview of Tourism and the Advent of New Types of Tours. A Multidiscip. Peer Rev. J. Organized by Novateur Publications, Pune, Maharashtra, India, July 11th and 12th 2020. 2020, 1–4. [Google Scholar]
- Yi, N.; Xu, J.; Yan, L.; Huang, L. Task optimization and scheduling of distributed cyber–physical system based on improved ant colony algorithm. Futur. Gener. Comput. Syst. 2020, 109, 134–148. [Google Scholar] [CrossRef]
- Ali, H.; Gong, D.; Wang, M.; Dai, X. Path Planning of Mobile Robot With Improved Ant Colony Algorithm and MDP to Produce Smooth Trajectory in Grid-Based Environment. Front. Neurorobot. 2020, 14, 44. [Google Scholar] [CrossRef]
Selected Objective | Explanation and References | Evaluation Scale | Rating |
---|---|---|---|
entertainment value (EN) | The value of entertainment refers to the entertainment available in the tourist site, which is available to the visitor. | Very high | 10 |
High | 7 | ||
Medium | 4 | ||
Low | 1 | ||
aesthetic and art (AA) | Aesthetics and arts include the aesthetic and artistic sensitivity. The practical, cultural, and philosophical qualities of the site. | Very high | 10 |
High | 7 | ||
Medium | 4 | ||
Low | 1 | ||
Cultural–historical value (CH) | The historical and cultural value is considered to be one of the most important factors that influences tourists’ flocking to tourist sites. | Very high | 10 |
High | 7 | ||
Medium | 4 | ||
Low | 1 | ||
scientific value (SI) | The scientific value of the tourist site indicates the scientific importance of the site, such as universities and others. | Very high | 10 |
High | 7 | ||
Medium | 4 | ||
Low | 1 | ||
size of tourism destination (TD) | The size of the tourist destination, the height of the place, and the tourist destination’s ability to accommodate tourists. | >50 km2 | 10 |
>10–50 km2 | 7 | ||
1–10 km2 | 4 | ||
<1 km2 | 1 | ||
tourism seasonality (TS) | Tourism seasonality is the possibility of visiting tourist sites in a specific season of the year; some sites can be visited year-round, such as museums, while some sites have seasonality, such as gardens. | >300 days/year | 10 |
>200–300 days/year | 7 | ||
100–200 days/year | 4 | ||
<100 days/year | 1 | ||
quality of service (QS) | quality of service includes all services provided within tourist sites, such as restaurants, cafes, shops, and others. | Very high | 10 |
High | 7 | ||
Medium | 4 | ||
Low | 1 | ||
time in site (TI) | This includes the time spent by the visitor inside the site, taking into account the opening and closing times of the gates. | >3 | 10 |
>2–3 | 7 | ||
>1–2 | 4 | ||
0–1 | 1 | ||
Biodiversity (BI) | The value of biological diversity is evaluated according to the different types of endemic animals. | Very high | 10 |
High | 7 | ||
Medium | 4 | ||
Low | 1 |
AP | KZ | JSAS | DSA | MS | ESM | CWTM | CDTM | HAT | LATS | CHV | |
---|---|---|---|---|---|---|---|---|---|---|---|
Airport (AP) | 0 | 165 | 129 | 202 | 136 | 88 | 100 | 129 | 184 | 116 | 232 |
Kuanzhaixiangzi(KZ) | 165 | 0 | 109 | 197 | 105 | 73 | 82 | 109 | 198 | 117 | 204 |
Jinli Street ancient street (JSAS) | 129 | 109 | 0 | 199 | 110 | 77 | 63 | 105 | 187 | 147 | 215 |
Dujiangyan Scenic Area (DSA) | 202 | 197 | 199 | 0 | 177 | 131 | 152 | 170 | 215 | 151 | 253 |
Manjusri College (MS) | 136 | 105 | 110 | 177 | 0 | 62 | 80 | 116 | 198 | 112 | 204 |
Eastern suburb memory (ESM) | 88 | 73 | 77 | 131 | 62 | 0 | 97 | 125 | 200 | 89 | 209 |
Chengdu Wuhou Temple Museum (CWTM) | 100 | 82 | 63 | 152 | 80 | 97 | 0 | 105 | 182 | 119 | 210 |
Chengdu DuFu Thatched Cottage Museum (CDM) | 129 | 109 | 105 | 170 | 116 | 125 | 105 | 0 | 188 | 123 | 207 |
Huanglongxi ancient town (HAT) | 184 | 198 | 187 | 215 | 198 | 200 | 182 | 188 | 0 | 145 | 270 |
Luodai Ancient Town scenic spot (LATS) | 116 | 117 | 147 | 151 | 112 | 89 | 119 | 123 | 145 | 0 | 227 |
Chengdu Happy Valley (CHV) | 232 | 204 | 215 | 253 | 204 | 209 | 210 | 207 | 270 | 227 | 0 |
Scale | Importance |
---|---|
1 | Equal importance |
2 | Weak |
3 | Moderate importance |
4 | Moderate plus |
5 | Strong importance |
6 | Strong plus |
7 | Very strong importance |
8 | Very strong plus |
9 | Extreme importance |
EN | AA | CH | SI | TD | TS | QS | TI | BI | Weight Score | |
---|---|---|---|---|---|---|---|---|---|---|
Entertainment value (EN) | 1.00 | 0.52 | 0.60 | 2.90 | 5.50 | 5.60 | 0.50 | 0.50 | 3.90 | 0.12 |
Aesthetic and art (AA) | 1.92 | 1.00 | 0.60 | 2.50 | 6.00 | 5.60 | 0.90 | 0.90 | 3.90 | 0.15 |
Cultural -historical value (CH) | 1.67 | 1.67 | 1.00 | 3.80 | 6.20 | 5.80 | 3.50 | 3.50 | 5.20 | 0.25 |
Scientific value (SI) | 0.34 | 4.00 | 0.26 | 1.00 | 6.20 | 5.60 | 0.50 | 0.50 | 3.20 | 0.09 |
Size of tourism destination (TD) | 0.18 | 0.16 | 0.16 | 0.16 | 1.00 | 1.30 | 0.25 | 0.25 | 0.16 | 0.02 |
Tourism seasonality (TS) | 0.18 | 5.50 | 0.17 | 0.18 | 0.78 | 1.00 | 0.33 | 0.33 | 0.18 | 0.08 |
Quality of service (QS) | 2.00 | 1.11 | 0.29 | 2.00 | 4.00 | 3.00 | 1.00 | 1.00 | 2.00 | 0.11 |
Time in site (TI) | 2.00 | 1.18 | 0.29 | 2.00 | 4.00 | 3.00 | 1.00 | 1.00 | 2.00 | 0.11 |
Biodiversity (BI) | 0.26 | 0.26 | 0.19 | 0.31 | 6.20 | 5.50 | 0.50 | 0.50 | 1.00 | 0.07 |
IR | TC | TD | TO | DTM | Weight Score | |
---|---|---|---|---|---|---|
Internal resources (IR) | 1.00 | 1.00 | 2.00 | 2.00 | 3.00 | 0.30 |
Total cost (TC) | 1.00 | 1.00 | 2.00 | 2.00 | 3.00 | 0.30 |
Total distance (TD) | 0.50 | 0.50 | 1.00 | 1.00 | 1.50 | 0.15 |
time out site (TO) | 0.50 | 0.50 | 2.00 | 1.00 | 1.50 | 0.15 |
Digital terrain model (DTM) | 0.33 | 0.33 | 0.67 | 0.67 | 1.00 | 0.10 |
Parameters | Values |
---|---|
Population size | 100 |
Crossover probability | 0.85 |
Mutation probability | 0.10 |
Number of generations | 4000 |
NO | X | Y | Name |
---|---|---|---|
P1 | 104.000000 | 30.000000 | Airport |
P2 | 104.059763 | 30.669938 | Kuan zhai xiang zi |
P3 | 104.056424 | 30.651723 | Jinli Street ancient street |
P4 | 103.617627 | 31.007930 | Dujiangyan Scenic Area |
P5 | 104.079149 | 30.681353 | Manjusri College |
P6 | 104.129446 | 30.674976 | Eastern suburb memory |
P7 | 104.054572 | 30.652582 | Chengdu Wuhou Temple Museum |
P8 | 104.034848 | 30.666397 | Chengdu Du Fu Thatched Cottage Museum |
P9 | 103.976489 | 30.323445 | Huanglongxi ancient town |
P10 | 104.332434 | 30.643115 | Lidia Ancient Town scenic spot |
P11 | 104.040307 | 30.729004 | Chengdu Happy Valley |
No. | The Objectives | The Path | Note |
---|---|---|---|
1 | Multiobjective | P2-P6-P5-P11-P4-P8-P7-P10-P9-P1-P3-P2 | Optimal path |
2 | Internal objectives | P10-P5-P9-P2-P8-P4-P11-P1-P7-P6-P3-P10 | |
3 | Cost objective | P3-P2-P6-P5-P11-P4-P8-P7-P10-P9-P1-P3 | |
4 | Total distance objective | P2-P5-P6-P10-P9-P1-P4-P11-P8-P7-P3-P2 | |
5 | Total time objective | P9-P10-P1-P6-P5-P7-P3-P8-P2-P11-P4-P9 | |
6 | DTM objective | P9-P4-P5-P2-P3-P11-P8-P10-P6-P1-P7-P9 |
Algorithm | Time Optimizes (s) | Multi Objective (Unit) | Internal Potential (Unit) | Cost (Yuan) | Travel Time (min) | Height (km) | Distance (m) |
---|---|---|---|---|---|---|---|
Traditional GA | 1.664 | 503 | 250 | 803 | 1387 | 298 | −1.50 |
ACOA | 0.890 | 497 | 252 | 825 | 1390 | 279 | −1.398 |
Improved GA | 0.450 | 495 | 248 | 742 | 1440 | 278 | −1.536 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damos, M.A.; Zhu, J.; Li, W.; Hassan, A.; Khalifa, E. A Novel Urban Tourism Path Planning Approach Based on a Multiobjective Genetic Algorithm. ISPRS Int. J. Geo-Inf. 2021, 10, 530. https://doi.org/10.3390/ijgi10080530
Damos MA, Zhu J, Li W, Hassan A, Khalifa E. A Novel Urban Tourism Path Planning Approach Based on a Multiobjective Genetic Algorithm. ISPRS International Journal of Geo-Information. 2021; 10(8):530. https://doi.org/10.3390/ijgi10080530
Chicago/Turabian StyleDamos, Mohamed A., Jun Zhu, Weilian Li, Abubakr Hassan, and Elhadi Khalifa. 2021. "A Novel Urban Tourism Path Planning Approach Based on a Multiobjective Genetic Algorithm" ISPRS International Journal of Geo-Information 10, no. 8: 530. https://doi.org/10.3390/ijgi10080530
APA StyleDamos, M. A., Zhu, J., Li, W., Hassan, A., & Khalifa, E. (2021). A Novel Urban Tourism Path Planning Approach Based on a Multiobjective Genetic Algorithm. ISPRS International Journal of Geo-Information, 10(8), 530. https://doi.org/10.3390/ijgi10080530