Impacts of Urban Morphology on Seasonal Land Surface Temperatures: Comparing Grid- and Block-Based Approaches
Abstract
:Highlights
- Urban 2-D and 3-D forms affect the built environment’s adaptability to surface heat and cold.
- Access to vegetation and water bodies helps moderate severe heat and cold across all seasons.
- Taller buildings are likely to reduce surface temperature in warm seasons due to shading.
- Older buildings with larger footprints are related to temperature increases across all seasons.
- Grid- and block-based approaches show comparable results in quadrant and regression analyses.
Abstract
1. Introduction
2. Literature Review
3. Study Area and Data
3.1. Study Area
3.2. Data Sources and Processing
3.2.1. Grid Cells Versus Street Blocks
3.2.2. Land Surface Temperatures
4. Methodology
4.1. Built-Environment Variables
4.1.1. NDVI and Albedo
4.1.2. Land Uses and Buildings
4.1.3. Gravity Index
4.2. Statistical Analyses
4.2.1. Quadrant Analysis
4.2.2. Regression Analysis
5. Results
5.1. Descriptive Statistics
5.2. Quadrant Analysis
5.3. Regression Analyses of LST
5.3.1. Model Selection
5.3.2. Model Estimation: Grid Level
5.3.3. Model Estimation: Block Level
6. Discussion
6.1. Effects of Building Morphology on Seasonal LST
6.2. Effects of Proximity to Green and Blue Spaces on Seasonal LST
6.3. Effects of Grid- and Block-Based Unit of Analysis
6.4. Policy Implications and Research Limitations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korea Meteorological Administration (KMA). 2022 Extreme Climate Report; Korea Meteorological Administration (KMA): Daejeon, Republic of Korea, 2023.
- Park, H.; Song, J. Relationship between Flood Damage and Flood Vulnerability Focusing on Property Damage and Human Casualties. J. Korea Plan. Assoc. 2023, 58, 149–166. [Google Scholar]
- World Health Organization (WHO). Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Turner, K.V.; Rogers, M.L.; Zhang, Y.; Middel, A.; Schneider, F.A.; Ocón, J.P.; Dialesandro, J. More than sur-face temperature: Mitigating thermal exposure in hyper-local land system. J. Land Use Sci. 2022, 17, 79–99. [Google Scholar] [CrossRef]
- Liu, X.; Ming, Y.; Liu, Y.; Yue, W.; Han, G. Influences of landform and urban form factors on urban heat island: Comparative case study between Chengdu and Chongqing. Sci. Total Environ. 2022, 820, 153395. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Doh, Y.H.; Lee, B.G. Impact of urbanization on land surface temperature and surface urban heat Island using optical remote sensing data: A case study of Jeju Island, Republic of Korea. Build. Environ. 2022, 222, 109368. [Google Scholar] [CrossRef]
- Boeing, G. Measuring the complexity of urban form and design. Urban Des. Int. 2018, 23, 281–292. [Google Scholar] [CrossRef]
- Kang, C.-D. Effects of urban form indicators on land prices in Seoul, Republic of Korea: An urban morphometric approach. J. Real Estate Anal. 2022, 8, 73–101. [Google Scholar] [CrossRef]
- Zhao, Y.; Sen, S.; Susca, T.; Iaria, J.; Kubilay, A.; Gunawarden, K.; Zhou, X.; Takane, Y.; Park, Y.; Wang, X.; et al. Beating urban heat: Multimeasure-centric solution sets and a complementary framework for decision-making. Renew. Sustain. Energy Rev. 2023, 186, 113668. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, J.; Lim, U. An analysis on the spatial patterns of heat wave vulnerable areas and adaptive capacity vulnerable areas in Seoul. J. Korea Plan. Assoc. 2018, 53, 87–107. [Google Scholar] [CrossRef]
- Kim, M.; Kwon, I.; Yoo, S. A Study on the Typological Characteristics of Deteriorated Low-rise Residential Areas in Seoul. J. Korea Plan. Assoc. 2022, 57, 5–25. [Google Scholar] [CrossRef]
- Guo, F.; Schlink, U.; Wu, W.; Hu, D.; Sun, J. Scale-dependent and season-dependent impacts of 2D/3D building morphology on land surface temperature. Sustain. Cities Soc. 2023, 97, 104788. [Google Scholar] [CrossRef]
- Liu, B.; Guo, X.; Jiang, J. How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study. Sustainability 2023, 15, 10787. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Mijani, N.; Kazemi, Y.; Amiraslani, F. Seasonal and daily effects of the sea on the surface urban heat island intensity: A case study of cities in the Caspian Sea Plain. Urban Clim. 2023, 51, 101603. [Google Scholar] [CrossRef]
- Zhao, L.; Li, T.; Przybysz, A.; Liu, H.; Zhang, B.; An, W.; Zhu, C. Effects of urban lakes and neighbouring green spaces on air temperature and humidity and seasonal variabilities. Sustain. Cities Soc. 2023, 91, 104438. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The win-win interaction between integrated blue and green space on urban cooling. Sci. Total Environ. 2023, 863, 160712. [Google Scholar] [CrossRef]
- Yao, L.; Li, T.; Xu, M.; Xu, Y. How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China. Urban For. Urban Green. 2020, 52, 126704. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Wang, T.; Wang, Z.; Gao, M.; Shen, H. Quantifying 3D building form effects on urban land surface temperature and modeling seasonal correlation patterns. Build. Environ. 2021, 204, 108132. [Google Scholar] [CrossRef]
- Shao, L.; Liao, W.; Li, P.; Luo, M.; Xiong, X.; Liu, X. Drivers of global surface urban heat islands: Surface property, climate background, and 2D/3D urban morphologies. Build. Environ. 2023, 242, 110581. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.M. Impact of greening on the urban heat island: Seasonal variations and mitigation strategies. Comput. Environ. Urban Syst. 2018, 71, 165–176. [Google Scholar] [CrossRef]
- Dai, Z.; Guldmann, J.M.; Hu, Y. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing. Sci. Total Environ. 2018, 626, 1136–1147. [Google Scholar] [CrossRef]
- Eresanya, E.O.; Daramola, M.T.; Durowoju, O.S.; Awoyele, P. Investigation of the changing patterns of the land use land cover over Osogbo and its environs. R. Soc. Open Sci. 2019, 6, 191021. [Google Scholar] [CrossRef]
- Li, T.; Xu, Y.; Yao, L. Detecting urban landscape factors controlling seasonal land surface temperature: From the perspective of urban function zones. Environ. Sci. Pollut. Res. 2021, 28, 41191–41206. [Google Scholar] [CrossRef]
- Adilkhanova, I.; Santamouris, M.; Yun, G.Y. Coupling urban climate modeling and city-scale building energy simulations with the statistical analysis: Climate and energy implications of high albedo materials in Seoul. Energy Build. 2023, 290, 113092. [Google Scholar] [CrossRef]
- HosseiniHaghighi, S.; Izadi, F.; Padsala, R.; Eicker, U. Using climate-sensitive 3D city modeling to analyze outdoor thermal comfort in urban areas. ISPRS Int. J. Geo-Inf. 2020, 9, 688. [Google Scholar] [CrossRef]
- Fan, C.; Que, X.; Wang, Z.; Ma, X. Land Cover Impacts on Surface Temperatures: Evaluation and Application of a Novel Spatiotemporal Weighted Regression Approach. ISPRS Int. J. Geo-Inf. 2023, 12, 151. [Google Scholar] [CrossRef]
- Ge, X.; Mauree, D.; Castello, R.; Scartezzini, J.L. Spatio-temporal relationship between land cover and land surface temperature in urban areas: A case study in Geneva and Paris. ISPRS Int. J. Geo-Inf. 2020, 9, 593. [Google Scholar] [CrossRef]
- Kafy, A.A.; Shuvo, R.M.; Naim, M.N.H.; Sikdar, M.S.; Chowdhury, R.R.; Islam, M.A.; Sarker, M.H.S.; Khan, M.H.H.; Kona, M.A. Remote sensing approach to simulate the land use/land cover and seasonal land surface temperature change using machine learning algorithms in a fastest-growing megacity of Bangladesh. Remote Sens. Appl. Soc. Environ. 2021, 21, 100463. [Google Scholar] [CrossRef]
- Wu, W.; Li, L.; Li, C. Seasonal variation in the effects of urban environmental factors on land surface temperature in a winter city. J. Clean. Prod. 2021, 299, 126897. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Han, S.; Hou, H.; Estoque, R.C.; Zheng, Y.; Shen, C.; Murayama, Y.; Pan, J.; Wang, B.; Hu, T. Seasonal effects of urban morphology on land surface temperature in a three-dimensional perspective: A case study in Hangzhou, China. Build. Environ. 2023, 228, 109913. [Google Scholar] [CrossRef]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, Z.; Guldmann, J.M. Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach. J. Environ. Manag. 2020, 266, 110424. [Google Scholar] [CrossRef]
- Hwang, R.L.; Lin, T.P.; Matzarakis, A. Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build. Environ. 2011, 46, 863–870. [Google Scholar] [CrossRef]
- Park, Y.; Guldmann, J.M.; Liu, D. Impacts of tree and building shades on the urban heat island: Combining remote sensing, 3D digital city and spatial regression approaches. Comput. Environ. Urban Syst. 2021, 88, 101655. [Google Scholar] [CrossRef]
- Cai, Z.; Han, G.; Chen, M. Do water bodies play an important role in the relationship between urban form and land surface temperature? Sustain. Cities Soc. 2018, 39, 487–498. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yu, W.; Ren, J.; Xiao, X.; Xia, J.C. Relationship between urban spatial form and seasonal land surface temperature under different grid scales. Sustain. Cities Soc. 2023, 89, 104374. [Google Scholar] [CrossRef]
- Han, D.; An, H.; Wang, F.; Xu, X.; Qiao, Z.; Wang, M.; Liu, Y. Understanding seasonal contributions of urban morphology to thermal environment based on boosted regression tree approach. Build. Environ. 2022, 226, 109770. [Google Scholar] [CrossRef]
- Yang, J.; Shi, Q.; Menenti, M.; Wong, M.S.; Wu, Z.; Zhao, Q.; Abbas, S.; Xu, Y. Observing the impact of urban morphology and building geometry on thermal environment by high spatial resolution thermal images. Urban Clim. 2021, 39, 100937. [Google Scholar] [CrossRef]
- Yu, K.; Chen, Y.; Wang, D.; Chen, Z.; Gong, A.; Li, J. Study of the seasonal effect of building shadows on urban land surface temperatures based on remote sensing data. Remote Sens. 2019, 11, 497. [Google Scholar] [CrossRef]
- Baek, J.; Kim, S.; Kang, D.; Ko, A.; Aida, A.; Choi, J.; Park, C. Prediction of Micro-climate Impact by Floor Height Change Scenarios in Housing Renewal Site: Focusing on the Temperature, Particulate Matter (PM10), Fine Particulate Matter (PM2.5). J. Korea Plan. Assoc. 2022, 57, 124–137. [Google Scholar] [CrossRef]
- Park, Y.; Zhao, Q.; Guldmann, J.M.; Wentz, E. Quantifying the Cumulative Cooling Effects of 3D Building and Tree Shades with High Resolution Thermal Imagery in a Hot Arid Urban Climate. Landsc. Urban Plan. 2023, 240, 104874. [Google Scholar] [CrossRef]
- Song, J.; Du, S.; Feng, X.; Guo, L. The relationships between landscape compositions and land surface temperature: Quantifying their resolution sensitivity with spatial regression models. Landsc. Urban Plan. 2014, 123, 145–157. [Google Scholar] [CrossRef]
- Cureau, R.J.; Pigliautile, I.; Pisello, A.L. Seasonal and diurnal variability of a water body’s effects on the urban microclimate in a coastal city in Italy. Urban Clim. 2023, 49, 101437. [Google Scholar] [CrossRef]
- Tang, L.; Zhan, Q.; Fan, Y.; Liu, H.; Fan, Z. Exploring the impacts of greenspace spatial patterns on land sur-face temperature across different urban functional zones: A case study in Wuhan metropolitan area, China. Ecol. Indic. 2023, 146, 109787. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Myint, S.W.; Zhao, Q.; Wentz, E.A. Impacts of spatial clustering of urban land cover on land surface temperature across Köppen climate zones in the contiguous United States. Landsc. Urban Plan. 2019, 192, 103668. [Google Scholar] [CrossRef]
- Zhu, Z.; Shen, Y.; Fu, W.; Zheng, D.; Huang, P.; Li, J.; Lan, Y.; Chen, Z.; Liu, Q.; Xu, X.; et al. How does 2D and 3D of urban morphology affect the seasonal land surface temperature in Island City? A block-scale perspective. Ecol. Indic. 2023, 150, 110221. [Google Scholar] [CrossRef]
- Zhang, Z.; Luan, W.; Yang, J.; Guo, A.; Su, M.; Tian, C. The influences of 2D/3D urban morphology on land sur-face temperature at the block scale in Chinese megacities. Urban Clim. 2023, 49, 101553. [Google Scholar] [CrossRef]
- Demographia. World Urban Areas 14th Annual Edition: 2018. Available online: http://www.demographia.com/db-worldua.pdf (accessed on 27 December 2018).
- Korea Meteorological Administration (KMA). Open MET Data Portal. 2023. Available online: https://data.kma.go.kr/climate/RankState/selectRankStatisticsDivisionList.do?pgmNo=179 (accessed on 29 August 2023).
- World Meteorological Organization (WMO). Archive of WMO El Niño/La Niña Updates for February 2017. 2017. Available online: https://community.wmo.int/en/activity-areas/climate/wmo-el-ninola-nina-updates (accessed on 29 August 2023).
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Environmental Geographic Information Service (EGIS). Land Use Land Cover Classification Maps. Korea Ministry of Environment. Available online: https://egis.me.go.kr/intro/land.do (accessed on 17 June 2023).
- NGII (National Geographic Information Institute of Korea). National Statistical Maps. 2023. Available online: https://map.ngii.go.kr/ms/map/NlipMap.do (accessed on 5 March 2023).
- Geng, X.; Yu, Z.; Zhang, D.; Li, C.; Yuan, Y.; Wang, X. The influence of local background climate on the dominant factors and threshold-size of the cooling effect of urban parks. Sci. Total Environ. 2022, 823, 153806. [Google Scholar] [CrossRef]
- Lin, W.; Yu, T.; Chang, X.; Wu, W.; Zhang, Y. Calculating cooling extents of green parks using remote sensing: Method and test. Landsc. Urban Plan. 2015, 134, 66–75. [Google Scholar] [CrossRef]
- Xiao, Y.; Piao, Y.; Pan, C.; Lee, D.; Zhao, B. Using buffer analysis to determine urban park cooling intensity: Five estimation methods for Nanjing, China. Sci. Total Environ. 2023, 868, 161463. [Google Scholar] [CrossRef]
- Ma, L.; Liu, S.; Fang, F.; Che, X.; Chen, M. Evaluation of urban-rural difference and integration based on quality of life. Sustain. Cities Soc. 2020, 54, 101877. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, X.; Shen, L. Urbanization bubble: Four quadrants measurement model. Cities 2015, 46, 8–15. [Google Scholar] [CrossRef]
- Lesage, J.P. The Theory and Practice of Spatial Econometrics; University of Toledo: Toledo, OH, USA, 1999; Volume 28, Available online: https://www.researchgate.net/publication/266218273_The_Theory_and_Practice_of_Spatial_Econometrics (accessed on 29 August 2023).
- Anselin, L. Exploring spatial data with GeoDaTM: A workbook. Cent. Spatially Integr. Soc. Sci. 2005, 1963, 165–223. [Google Scholar]
- Anselin, L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal. 1988, 20, 1–17. [Google Scholar] [CrossRef]
- Conway, D.; Li, C.Q.; Wolch, J.; Kahle, C.; Jerrett, M. A spatial autocorrelation approach for examining the effects of urban greenspace on residential property values. J. Real Estate Financ. Econ. 2010, 41, 150–169. [Google Scholar] [CrossRef]
- Dai, Z.; Guldmann, J.M.; Hu, Y. Thermal impacts of greenery, water, and impervious structures in Beijing’s Olympic area: A spatial regression approach. Ecol. Indic. 2019, 97, 77–88. [Google Scholar] [CrossRef]
- Guo, A.; Yang, J.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Influences of urban spatial form on urban heat island effects at the community level in China. Sustain. Cities Soc. 2020, 53, 101972. [Google Scholar] [CrossRef]
- Ismaila, A.R.B.; Muhammed, I.; Adamu, B. Modelling land surface temperature in urban areas using spatial regression models. Urban Clim. 2022, 44, 101213. [Google Scholar] [CrossRef]
- Liao, W.; Hong, T.; Heo, Y. The effect of spatial heterogeneity in urban morphology on surface urban heat is-lands. Energy Build. 2021, 244, 111027. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, W.; Yan, J.; Qian, Y.; Wang, J.; Li, W. The higher, the cooler? Effects of building height on land surface temperatures in residential areas of Beijing. Phys. Chem. Earth 2019, 110, 149–156. [Google Scholar] [CrossRef]
- Hong, T.; Heo, Y. Exploring the impact of urban factors on land surface temperature and outdoor air temperature: A case study in Seoul, Korea. Build. Environ. 2023, 243, 110645. [Google Scholar] [CrossRef]
- Park, C.; Ha, J.; Lee, S. Association between three-dimensional built environment and urban air temperature: Seasonal and temporal differences. Sustainability 2017, 9, 1338. [Google Scholar] [CrossRef]
- Du, H.; Song, X.; Jiang, H.; Kan, Z.; Wang, Z.; Cai, Y. Research on the cooling island effects of water body: A case study of Shanghai, China. Ecol. Indic. 2016, 67, 31–38. [Google Scholar] [CrossRef]
Collection | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
Date | 2017.03.19 | 2017.08.26 | 2017.11.14 | 2017.01.14 | |
Time | 11:10 a.m. | 11:10 a.m. | 11:10 a.m. | 11:11 a.m. | |
LST (°C) | Mean | 19.8 | 34.5 | 12.8 | −2.7 |
Max | 35.4 | 52.0 | 21.6 | 5.0 | |
Min | 3.9 | 18.2 | −5.9 | −18.5 | |
AT (°C) (Korea Meteorological Administration (KMA) weather history: https://www.weather.go.kr/w/obs-climate/land/past-obs/obs-by-day.do) (accessed on 16 June 2023) | Mean | 10.9 | 24.2 | 7.5 | −8.4 |
Max | 18.9 | 29.2 | 11.4 | −5.4 | |
Min | 3.2 | 19.0 | 2.9 | −10.4 |
Category | Variables | Unit | Source | ||
---|---|---|---|---|---|
Dependent | Seasonal land surface temperature (LST) | °C | Landsat 8 TIR | ||
Explanatory | Vegetation | Seasonal normalized difference in vegetation index (NDVI) | [0~1] | Landsat 8 OLI | |
Land use | Land use type proportion | Residential | % | Korea Environmental Geographic Information Service (EGIS) 2017 | |
Commercial | % | ||||
Industrial | % | ||||
Cultural and Recreational | % | ||||
Transport | % | ||||
Public | % | ||||
Other uses | % | ||||
Land use diversity | Entropy index | [0~1] | |||
Reflectance | Albedo | % | Landsat 8 OLI | ||
Building | 2-D | Building density | Count /10,000 m2 | Korea National Geographic Information Institute (NGII) 2017 | |
Percent old buildings (+35 years) | % | ||||
Average building coverage ratio (BCR) | % | ||||
3-D | Average floor area ratio (FAR) | % | |||
Average total floor area | m2 | ||||
Average building height | m | ||||
Natural Area | Proximity to natural areas | Gravity index for urban forests | m2 | EGIS 2017 | |
Gravity index for rivers and streams | m2 |
Category | Variable | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|---|
LST | LST (°C) | Spring | 20.69 | 1.62 | 11.00 | 31.20 |
Summer | 37.38 | 2.31 | 25.25 | 49.86 | ||
Autumn | 13.30 | 1.09 | −2.68 | 20.22 | ||
Winter | −2.36 | 1.06 | −11.77 | 3.90 | ||
Vegetation | NDVI (0~1) | Spring | 0.31 | 0.04 | 0.16 | 0.65 |
Summer | 0.43 | 0.09 | 0.21 | 0.90 | ||
Autumn | 0.28 | 0.03 | 0.15 | 0.48 | ||
Winter | 0.17 | 0.02 | 0.11 | 0.43 | ||
Land | Albedo (%) | Spring | 10.32 | 1.51 | 0.00 | 28.92 |
Summer | 12.38 | 1.97 | 0.00 | 45.44 | ||
Autumn | 6.61 | 1.32 | 0.00 | 33.60 | ||
Winter | 5.16 | 1.26 | 0.00 | 27.88 | ||
Land use type proportion (%) | Residential | 16.99 | 19.97 | 0.00 | 100.00 | |
Commercial | 15.88 | 24.59 | 0.00 | 100.00 | ||
Industrial | 0.44 | 4.88 | 0.00 | 100.00 | ||
Cultural and Recreational | 0.83 | 5.95 | 0.00 | 99.87 | ||
Transport | 44.16 | 37.50 | 0.00 | 100.00 | ||
Public | 4.74 | 14.21 | 0.00 | 100.00 | ||
Other uses | 17.00 | 29.38 | 0.00 | 100.00 | ||
Land use Diversity (0~1) | Entropy Index | 0.27 | 0.17 | 0.00 | 0.71 | |
Building | 2-D form | Building density (/10,000 m2) | 16.25 | 17.41 | 0.00 | 180.00 |
% of old buildings (+35 years) | 18.22 | 24.35 | 0.00 | 100.00 | ||
Average building coverage ratio (%) | 35.05 | 25.39 | 0.00 | 90.00 | ||
3-D form | Average floor area ratio (%) | 127.72 | 124.18 | 0.00 | 1420.19 | |
Average total floor area (m2) | 3059.99 | 10,260.07 | 0.00 | 426,719.15 | ||
Average building height (m) | 14.68 | 16.90 | 0.00 | 284.00 | ||
Natural Area | Proximity to nature | Gravity index for urban Forests (m2) | 21.45 | 29.01 | 0.00 | 436.64 |
Gravity index for rivers and streams (m2) | 9.15 | 16.29 | 0.00 | 160.01 |
Category | Variable | Mean | Std. Dev. | Min. | Max. | |
---|---|---|---|---|---|---|
Block | Street block area (m2) | 65,451.6 | 184,125.9 | 3071.2 | 11,526,268.3 | |
LST | LST (°C) | Spring | 20.45 | 1.17 | 15.32 | 25.93 |
Summer | 37.75 | 1.70 | 31.27 | 45.21 | ||
Autumn | 13.31 | 0.80 | 8.40 | 17.04 | ||
Winter | −2.50 | 0.76 | −5.94 | 1.07 | ||
Vegetation | NDVI (0~1) | Spring | 0.30 | 0.03 | 0.21 | 0.45 |
Summer | 0.41 | 0.05 | 0.31 | 0.74 | ||
Autumn | 0.27 | 0.02 | 0.21 | 0.37 | ||
Winter | 0.17 | 0.01 | 0.13 | 0.25 | ||
Land | Albedo (%) | Spring | 9.99 | 0.85 | 7.39 | 15.00 |
Summer | 11.97 | 1.16 | 8.05 | 22.38 | ||
Autumn | 6.33 | 0.71 | 3.53 | 12.28 | ||
Winter | 4.89 | 0.70 | 2.83 | 12.53 | ||
Land use type proportion (%) | Residential | 25.25 | 18.76 | 0.00 | 83.92 | |
Commercial | 16.08 | 13.24 | 0.00 | 74.33 | ||
Industrial | 0.21 | 1.85 | 0.00 | 49.00 | ||
Cultural and Recreational | 1.07 | 2.35 | 0.00 | 31.83 | ||
Transport | 40.79 | 12.89 | 0.19 | 91.91 | ||
Public | 3.09 | 4.10 | 0.00 | 48.87 | ||
Other uses | 13.50 | 16.31 | 0.00 | 99.81 | ||
Land use Diversity (0~1) | Entropy Index | 0.60 | 0.11 | 0.01 | 0.91 | |
Building | 2-D form | Building density (/10,000 m2) | 20.96 | 16.01 | 0.00 | 95.80 |
% of old buildings (+35 years) | 21.43 | 19.21 | 0.00 | 100.00 | ||
Average building coverage ratio (%) | 49.28 | 14.65 | 0.00 | 82.94 | ||
3-D form | Average floor area ratio (%) | 184.84 | 114.62 | 0.00 | 1409.81 | |
Average total floor area (m2) | 3564.85 | 13,382.49 | 0.00 | 426,719.15 | ||
Average building height (m) | 18.29 | 15.41 | 0.00 | 250.73 | ||
Natural Area | Proximity to nature | Gravity index for urban forests (m2) | 19.13 | 26.21 | 0.00 | 267.06 |
Gravity index for rivers and streams (m2) | 7.71 | 13.06 | 0.00 | 98.58 |
Variables (Unit) | Summer–Winter LST Quadrants | |||
---|---|---|---|---|
Quadrant 1 (Hot-Warm) | Quadrant 2 (Cool-Warm) | Quadrant 3 (Cool-Cold) | Quadrant 4 (Hot-Cold) | |
Grid level (N = 31,347) | ||||
Count | 10,635 (33.9%) | 5080 (16.2%) | 9023 (28.8%) | 6609 (21.1%) |
Summer LST * (°C) | 39.28 ** | 35.26 ** | 35.50 ** | 38.50 ** |
Winter LST * (°C) | −1.56 ** | −1.59 ** | −3.36 ** | −2.88 ** |
Summer NDVI * (0~1) | 0.40 ** | 0.51 ** | 0.45 ** | 0.39 ** |
Winter NDVI * (0~1) | 0.17 ** | 0.19 ** | 0.17 ** | 0.16 ** |
Building density (/10,000 m2) * | 22.43 ** | 4.35 ** | 8.15 ** | 26.51 ** |
Percent old buildings * | 24.37 ** | 9.88 ** | 11.60 ** | 23.76 ** |
Average BCR * (%) | 42.33 ** | 16.66 ** | 25.87 ** | 50.02 ** |
Average FAR * (%) | 135.97 ** | 70.78 ** | 118.79 ** | 170.41 ** |
Average TFA * (m2) | 1405.4 ** | 2924.8 ** | 6044.6 ** | 1751.7 ** |
Average BH * (m) | 11.47 ** | 10.11 ** | 21.22 ** | 14.41 ** |
GIUF * (m2) | 15.39 ** | 22.58 ** | 31.05 ** | 17.24 ** |
GIWB * (m2) | 8.77 ** | 15.33 ** | 8.03 ** | 6.55 ** |
Block level (N = 4544) | ||||
Count | 1665 (36.6%) | 685 (15.1%) | 1361 (30.0%) | 833 (18.3%) |
Summer LST * (°C) | 39.15 ** | 36.55 ** | 36.12 ** | 38.60 ** |
Winter LST * (°C) | −1.92 ** | −1.97 ** | −3.25 ** | −2.86 ** |
Summer NDVI * (0~1) | 0.39 ** | 0.44 ** | 0.43 ** | 0.39 ** |
Winter NDVI * (0~1) | 0.17 ** | 0.18 ** | 0.17 ** | 0.16 ** |
Building density * (/10,0002) | 28.62 ** | 11.19 ** | 11.56 ** | 29.02 ** |
Percent old buildings * | 27.66 ** | 15.51 ** | 14.32 ** | 25.48 ** |
Average BCR * (%) | 53.73 ** | 43.79 ** | 43.32 ** | 54.66 ** |
Average FAR * (%) | 171.19 | 181.77 | 204.02 ** | 183.29 |
Average TFA * (m2) | 1198.3 ** | 4904.1 | 7215.0 ** | 1229.9 ** |
Average BH * (m) | 13.43 ** | 19.69 ** | 25.89 ** | 14.46 ** |
GIUF * (m2) | 13.49 ** | 21.72 ** | 27.55 ** | 14.52 ** |
GIWB * (m2) | 8.27 ** | 12.05 ** | 6.19 ** | 5.47 ** |
Unit | Statistics | Spring LST | Summer LST | Autumn LST | Winter LST |
---|---|---|---|---|---|
Grid | Moran’s I (error) | 222.6 *** | 233.1 *** | 246.0 *** | 215.0 *** |
Lagrange Multiplier (lag) | 43,918.0 *** | 40,443.8 *** | 51,506.0 *** | 41,759.4 *** | |
Robust LM (lag) | 4092.0 *** | 2816.3 *** | 939.4 *** | 2136.2 *** | |
Lagrange Multiplier (error) | 49,414.6 *** | 54,189.2 *** | 60,385.2 *** | 46,104.9 *** | |
Robust LM (error) | 9588.6 *** | 16,561.7 *** | 9818.6 *** | 6481.7 *** | |
Block | Moran’s I (error) | 49.1 *** | 53.6 *** | 55.1 *** | 47.2 *** |
Lagrange Multiplier (lag) | 681.5 *** | 513.0 *** | 860.3 *** | 1738.3 *** | |
Robust LM (lag) | 50.7 *** | 46.8 *** | 13.5 *** | 51.4 *** | |
Lagrange Multiplier (error) | 2384.0 *** | 2837.1 *** | 3008.1 *** | 2203.5 *** | |
Robust LM (error) | 1753.2 *** | 2370.9 *** | 2161.2 *** | 516.6 *** |
Variable | Spring LST | Summer LST | Autumn LST | Winter LST | |
---|---|---|---|---|---|
Constant | 1.7117 *** | 15.210 *** | 1.5375 *** | −3.453 *** | |
NDVI | 3.8497 *** | −3.671 *** | 3.8345 *** | 8.489 *** | |
Albedo | 0.1373 *** | 0.0643 *** | 0.1182 *** | 0.1761 *** | |
Land use proportion | Residential | −0.0009 *** | 0.0051 *** | 0.0028 *** | 0.0024 *** |
Commercial | 0.0029 *** | 0.0094 *** | 0.0047 *** | 0.0038 *** | |
Industrial | 0.0090 *** | 0.0160 *** | 0.0088 *** | 0.0051 *** | |
Cultural and Recreational | 0.0153 *** | 0.0244 *** | 0.0087 *** | 0.0076 *** | |
Transport | 0.0056 *** | 0.0109 *** | 0.0073 *** | 0.0074 *** | |
Public | 0.0030 *** | 0.0114 *** | 0.0040 *** | 0.0022 *** | |
Land-use mix | Entropy Index | −0.2552 *** | −0.1454 *** | −0.1846 *** | −0.1842 *** |
Building 2-D form | Count of buildings | 0.0094 *** | 0.0142 *** | 0.0073 *** | 0.0043 *** |
% of old buildings (+35 years) | 0.0014 *** | 0.0025 *** | 0.0005 *** | 0.0003 *** | |
Average building coverage ratio (BCR) | 0.0029 *** | 0.0053 *** | 0.0014 *** | 0.0008 *** | |
Building 3-D form | Average floor area ratio | −0.0004 *** | −0.0006 *** | −0.0001 *** | 0.0000 |
Average total floor area | −1.0 10-6 * | −1.0 10-6 ** | −2.0 10-6 *** | −2.0 10-6 *** | |
Average building height | −0.0033 *** | −0.0045 *** | −0.0001 | 0.0001 | |
Natural areas | Gravity index for urban forests | −0.0023 *** | −0.0188 *** | −0.0028 *** | −0.0036 *** |
Gravity index for water bodies | −0.0010 ** | −0.0140 *** | 0.0015 *** | 0.0053 *** | |
Rho (ρ) | 0.783 *** | 0.602 *** | 0.715 *** | 0.674 *** | |
Lambda (λ) | 0.653 *** | 0.837 *** | 0.747 *** | 0.704 *** | |
Adj. R2 | 0.901 | 0.928 | 0.867 | 0.843 | |
Std. Err. | 0.51 | 0.62 | 0.39 | 0.42 | |
AIC | 30,942.3 | 43,219.4 | 15,409.4 | 17,783.5 |
Variable | Spring LST | Summer LST | Autumn LST | Winter LST | |
---|---|---|---|---|---|
Constant | 6.5829 *** | 21.304 *** | 4.5804 *** | −6.5914 *** | |
NDVI | 3.6073 *** | −4.371 *** | 7.8906 *** | 10.8662 *** | |
Albedo | 0.4423 *** | 0.1319 *** | 0.2806 *** | 0.4600 *** | |
Land use proportion | Residential | 0.0003 | 0.0163 *** | 0.0101 *** | 0.0050 *** |
Commercial | 0.0125 *** | 0.0297 *** | 0.0160 *** | 0.0085 *** | |
Industrial | 0.0444 *** | 0.0914 *** | 0.0432 *** | 0.0173 *** | |
Cultural and Recreational | 0.0449 *** | 0.0595 *** | 0.0209 *** | 0.0158 *** | |
Transport | 0.0028 ** | 0.0182 *** | 0.0113 *** | 0.0083 *** | |
Public | 0.0047 * | 0.0406 *** | 0.0075 *** | −0.0081 *** | |
Land-use mix | Entropy Index | −0.1979 *** | −0.0415 | −0.0919 *** | −0.0797 *** |
Building 2-D form | Building density (100 m2) | 0.0165 *** | 0.0253 *** | 0.0098 *** | 0.0057 *** |
% of old buildings (+35 years) | 0.0047 *** | 0.0073 *** | 0.0013 *** | 0.0006 | |
Average building coverage ratio (BCR) | 0.0047 *** | 0.0053 *** | 0.0022 *** | 0.0016 ** | |
Building 3-D form | Average floor area ratio | −0.0008 *** | −0.0011 *** | −0.0002 *** | −0.0001 |
Average total floor area | 4.0 10−6 *** | 4.0 10−6 *** | 0.00 | −1.0 10−6 | |
Average building height | −0.0087 *** | −0.0119 *** | −0.0027 *** | −0.0029 *** | |
Natural areas | Gravity index for urban forests | −0.0007 * | −0.0098 *** | −0.0032 *** | −0.0036 *** |
Gravity index for water bodies | 0.0018 * | −0.0046 *** | 0.0020 ** | 0.0071 *** | |
Rho (ρ) | 0.388 *** | 0.384 *** | 0.282 | 0.227 *** | |
Lambda (λ) | 0.463 *** | 0.508 *** | 0.607 | 0.560 *** | |
Adj. R2 | 0.730 | 0.813 | 0.674 | 0.636 | |
Std. Err. | 0.61 | 0.73 | 0.46 | 0.46 | |
AIC | 5616.4 | 7390.3 | 3132.8 | 3113.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, G.; Park, Y.; Guldmann, J.-M. Impacts of Urban Morphology on Seasonal Land Surface Temperatures: Comparing Grid- and Block-Based Approaches. ISPRS Int. J. Geo-Inf. 2023, 12, 482. https://doi.org/10.3390/ijgi12120482
Jeon G, Park Y, Guldmann J-M. Impacts of Urban Morphology on Seasonal Land Surface Temperatures: Comparing Grid- and Block-Based Approaches. ISPRS International Journal of Geo-Information. 2023; 12(12):482. https://doi.org/10.3390/ijgi12120482
Chicago/Turabian StyleJeon, Gyuwon, Yujin Park, and Jean-Michel Guldmann. 2023. "Impacts of Urban Morphology on Seasonal Land Surface Temperatures: Comparing Grid- and Block-Based Approaches" ISPRS International Journal of Geo-Information 12, no. 12: 482. https://doi.org/10.3390/ijgi12120482