Classifying the Shapes of Buildings by Combining Distance Field Enhancement and a Convolution Neural Network
Abstract
:1. Introduction
2. Methodology
2.1. Vector Building Rasterization
2.2. Feature Enhancement Using Distance Field
2.3. Fusion of Distance Field with Building Boundary
2.4. Building Shape Classification
3. Experiments
3.1. Experimental Data and Parameter Settings
3.2. Results and Analysis
3.3. Comparative Experiments
3.3.1. Different Sizes of Template Comparation
3.3.2. Different Regions for Distance Field Enhancement Comparation
3.4. Tests on Microsoft Building Footprint Dataset
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, X.; Yang, M. A Comparative Study of Various Deep Learning Approaches to Shape Encoding of Planar Geospatial Objects. ISPRS Int. J. Geo-Inf. 2022, 11, 527. [Google Scholar] [CrossRef]
- Klettner, S. Why Shape Matters—On the Inherent Qualities of Geometric Shapes for Cartographic Representations. Int. J. Geo-Inf. 2019, 8, 217. [Google Scholar] [CrossRef]
- Wurm, M.; Schmitt, A.; Taubenböck, H. Building Types’ Classification Using Shape-Based Features and Linear Discriminant Functions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1901–1912. [Google Scholar] [CrossRef]
- Shi, Y.; Xie, X.; Fung, J.C.-H.; Ng, E. Identifying Critical Building Morphological Design Factors of Street-Level Air Pollution Dispersion in High-Density Built Environment Using Mobile Monitoring. Build. Environ. 2018, 128, 248–259. [Google Scholar] [CrossRef]
- Yang, M.; Kong, B.; Dang, R.; Yan, X. Classifying Urban Functional Regions by Integrating Buildings and Points-of-Interest Using a Stacking Ensemble Method. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102753. [Google Scholar] [CrossRef]
- YAN, X.; AI, T.; YANG, M.; TONG, X. Graph Convolutional Autoencoder Model for the Shape Coding and Cognition of Buildings in Maps. Int. J. Geogr. Inf. Sci. 2021, 35, 490–512. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Zhang, X.; Ai, T. Change Detection for Building Footprints with Different Levels of Detail Using Combined Shape and Pattern Analysis. ISPRS Int. J. Geo-Inf. 2018, 7, 406. [Google Scholar] [CrossRef]
- Zhang, X.; Ai, T.; Stoter, J.; Zhao, X. Data Matching of Building Polygons at Multiple Map Scales Improved by Contextual Information and Relaxation. ISPRS J. Photogramm. Remote Sens. 2014, 92, 147–163. [Google Scholar] [CrossRef]
- Li, W.; Goodchild, M.F.; Church, R. An Efficient Measure of Compactness for Two-Dimensional Shapes and Its Application in Regionalization Problems. Int. J. Geogr. Inf. Sci. 2013, 27, 1227–1250. [Google Scholar] [CrossRef]
- Maceachren, A.M. Compactness of Geographic Shape: Comparison and Evaluation of Measures. Geogr. Ann. Ser. B Hum. Geogr. 1985, 67, 53–67. [Google Scholar] [CrossRef]
- Melih, B.; Sinan, C. Performance of Shape Indices and Classification Schemes for Characterising Perceptual Shape Complexity of Building Footprints in GIS. Int. J. Geogr. Inf. Sci. 2017, 31, 1952–1977. [Google Scholar]
- Du, S.; Zhang, F.; Zhang, X. Semantic Classification of Urban Buildings Combining VHR Image and GIS Data: An Improved Random Forest Approach. ISPRS J. Photogramm. Remote Sens. 2015, 105, 107–119. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, B.; Li, H.; Liu, Y.; Wei, R.; Liu, S. Research on the Shape Classification Method of Rural Homesteads Based on Parcel Scale—Taking Yangdun Village as an Example. Remote Sens. 2023, 15, 4763. [Google Scholar] [CrossRef]
- Inglada, J. Automatic Recognition of Man-Made Objects in High Resolution Optical Remote Sensing Images by SVM Classification of Geometric Image Features. ISPRS J. Photogramm. Remote Sens. 2007, 62, 236–248. [Google Scholar] [CrossRef]
- Hong, S.; Lee, Y. Typification of Irregular Shaped Land Parcels Using Machine Learning. J. Archit. Inst. Korea 2022, 38, 189–198. [Google Scholar] [CrossRef]
- Novitasari, M.; Yaddarabullah; Permana, S.D.H.; Krishnasari, E.D. Classification of House Buildings Based on Land Size Using the K-Nearest Neighbor Algorithm. In Proceedings of the 2nd International Conference of Science and Information Technology in Smart Administration, Balikpapan, Indonesia, 20–21 October 2021. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Collobert, R.; Com, C.; Weston, J.; Bottou, L.; Org, B.; Karlen, M.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural Language Processing (Almost) from Scratch. J. Mach. Learn. Res. 2011, 12, 2493–2537. [Google Scholar]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [Google Scholar] [CrossRef]
- Deng, L.; Platt, J. Ensemble deep learning for speech recognition. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association, Singapore, 14–18 September 2014. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Alidoost, F.; Arefi, H. A CNN-Based Approach for Automatic Building Detection and Recognition of Roof Types Using a Single Aerial Image. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 235–248. [Google Scholar] [CrossRef]
- Castagno, J.; Atkins, E. Roof Shape Classification from LiDAR and Satellite Image Data Fusion Using Supervised Learning. Sensors 2018, 18, 3960. [Google Scholar] [CrossRef]
- Partovi, T.; Fraundorfer, F.; Azimi, S.; Marmanis, D.; Reinartz, P. Roof Type Selection Based on Patch-Based Classsification Using Deep Learning for High Resolution Satellite Imager. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 653–657. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, P.; Liu, A.; Liu, S. Map building shape classification method based on AlexNet. J. Geo-Inf. Sci. 2022, 24, 2333–2341. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations, Miami Beach, FL, USA, 24–26 April 2017. [Google Scholar]
- Yan, X.; Ai, T.; Yang, M. A simplification of residential feature by the shape cognition and template matching method. Acta Geod. Cartogr. Sin. 2021, 50, 757–765. [Google Scholar]
- Liu, C.; Hu, Y.; Li, Z.; Xu, J.; Han, Z.; Guo, J. TriangleConv: A Deep Point Convolutional Network for Recognizing Building Shapes in Map Space. ISPRS Int. J. Geo-Inf. 2021, 10, 687. [Google Scholar] [CrossRef]
- Yu, Y.; He, K.; Wu, F.; Xu, J. Graph convolution neural network method for shape classification of areal settlements. Acta Geod. Cartogr. Sin. 2022, 51, 2390–2402. [Google Scholar]
- Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.; Bronstein, M.M. Geometric Deep Learning on Graphs and Manifolds Using Mixture Model CNNs. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Reda, K.; Kedzierski, M. Detection, Classification and Boundary Regularization of Buildings in Satellite Imagery Using Faster Edge Region Convolutional Neural Networks. Remote Sens. 2020, 12, 2240. [Google Scholar] [CrossRef]
- Chen, G.; Qian, H. Extracting Skeleton Lines from Building Footprints by Integration of Vector and Raster Data. ISPRS Int. J. Geo-Inf. 2022, 11, 480. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Pfaltz, J.L. Sequential Operations in Digital Picture Processing. J. ACM 1966, 13, 471–494. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Pfaltz, J.L. Distance Functions on Digital Pictures. Pattern Recognit. 1968, 1, 33–61. [Google Scholar] [CrossRef]
- Hu, H.; Liu, X.; Hu, P. Voronoi Diagram Generation on the Ellipsoidal Earth. Comput. Geosci. 2014, 73, 81–87. [Google Scholar] [CrossRef]
- Audebert, N.; Boulch, A.; Le Saux, B.; Lefèvre, S. Distance Transform Regression for Spatially-Aware Deep Semantic Segmentation. Comput. Vis. Image Underst. 2019, 189, 102809. [Google Scholar] [CrossRef]
- Papandreou, G.; Maragos, P. Multigrid Geometric Active Contour Models. IEEE Trans. Image Process. 2007, 16, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Yang, H.; Hou, X. Distance Field-Based Convolutional Neural Network for Edge Detection. Comput. Intell. Neurosci. 2022, 2022, 1712258. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lin, Z.; Jiao, Y.; Chan, M.-T.; Huang, S.; Wang, L. Two-Stage Segmentation Framework Based on Distance Transformation. Sensors 2022, 22, 250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, X.; Liu, F.; Chen, J.; Zhou, Y.; Shen, W.; Fishman, E.K.; Yuille, A.L. Deep Distance Transform for Tubular Structure Segmentation in CT Scans. In Proceedings of the Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 14–19 June 2020. [Google Scholar]
- Yang, M.; Cheng, L.; Cao, M.; Yan, X. A Stacking Ensemble Learning Method to Classify the Patterns of Complex Road Junctions. ISPRS Int. J. Geo-Inf. 2022, 11, 523. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Yan, X.; Ai, T.; Zhang, X. Template Matching and Simplification Method for Building Features Based on Shape Cognition. ISPRS Int. J. Geo-Inf. 2017, 6, 250. [Google Scholar] [CrossRef]
- Yang, C.; Hu, H.; Hu, P.; Cao, F. Solution of Euclidean Shortest Path Problem Space with Obstacles. Geomat. Inf. Sci. Wuhan Univ. 2012, 37, 1495–1499. [Google Scholar]
Shape Type | Shape Example | |||
---|---|---|---|---|
E-shape | ||||
F-shape | ||||
H-shape | ||||
I-shape | ||||
L-shape | ||||
O-shape | ||||
T-shape | ||||
U-shape | ||||
Y-shape | ||||
Z-shape |
Image Type | Accuracy (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | F | H | I | L | O | T | U | Y | Z | Overall | |
Raster building image | 97.68 | 92.52 | 96.63 | 99.71 | 98.99 | 100 | 88.24 | 97.70 | 93.43 | 99.04 | 96.00 |
Distance field enhancement image | 98.69 | 96.86 | 99.07 | 100 | 99.69 | 100 | 100 | 99.30 | 93.46 | 100 | 98.80 |
Image example | Prediction probability (%) | Image example | Prediction probability (%) | ||||||||||||||||||||
E | F | H | I | L | O | T | U | Y | Z | E | F | H | I | L | O | T | U | Y | Z | ||||
Raster building image | 8.43 | 0.55 | 0.01 | 0 | 0.10 | 0.02 | 90.85 | 0 | 0 | 0.03 | Distance field enhancement image | 99.59 | 0.24 | 0 | 0 | 0 | 0 | 0 | 0.17 | 0 | 0 | ||
0.02 | 4.43 | 0 | 0.50 | 0 | 0 | 0 | 0 | 0 | 95.05 | 0.14 | 98.88 | 0 | 0.85 | 0 | 0 | 0 | 0 | 0 | 0.13 | ||||
96.92 | 0.08 | 2.68 | 0 | 0 | 0.01 | 0 | 0.31 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||||
0 | 0 | 0 | 46.28 | 0.46 | 0 | 53.26 | 0 | 0 | 0 | 0 | 0.11 | 0 | 99.81 | 0 | 0 | 0.08 | 0 | 0 | 0 | ||||
0 | 1.67 | 0 | 49.57 | 48.67 | 0 | 0 | 0 | 0 | 0 | 0 | 0.03 | 0 | 0.12 | 97.32 | 0 | 1.55 | 0 | 0.98 | 0 | ||||
0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | ||||
0 | 99.16 | 0.01 | 0.01 | 0 | 0 | 0.53 | 0 | 0.01 | 0.28 | 0 | 1.97 | 0.02 | 0.01 | 0.05 | 0 | 86.22 | 0 | 10.46 | 1.27 | ||||
1.08 | 2.42 | 0 | 0.97 | 81.94 | 0.10 | 0.06 | 12.56 | 0.01 | 0.85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | ||||
0 | 0 | 0 | 0 | 0.01 | 0 | 99.88 | 0 | 0.10 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | ||||
0 | 0.06 | 0 | 0.06 | 78.91 | 0.04 | 0.14 | 6.26 | 0.01 | 14.52 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 | 99.97 |
Template Size | Accuracy (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | F | H | I | L | O | T | U | Y | Z | Overall | |
7 × 7 | 100 | 95.41 | 100 | 100 | 97.98 | 100 | 97.09 | 100 | 91.92 | 97.20 | 97.90 |
13 × 13 | 98.69 | 96.86 | 99.07 | 100 | 99.69 | 100 | 100 | 99.30 | 93.46 | 100 | 98.80 |
15 × 15 | 99.05 | 95.00 | 99.11 | 99.15 | 98.91 | 100 | 97.83 | 99.07 | 95.24 | 100 | 98.40 |
Image Type | Accuracy (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | F | H | I | L | O | T | U | Y | Z | Overall | |
Raster image | 97.68 | 92.52 | 96.63 | 99.71 | 98.99 | 100 | 88.24 | 97.70 | 93.43 | 99.04 | 96.00 |
Internal enhancement image | 98.69 | 96.86 | 99.07 | 100 | 99.69 | 100 | 100 | 99.30 | 93.46 | 100 | 98.80 |
External enhancement image | 98.11 | 95.05 | 95.56 | 100 | 99.00 | 100 | 100 | 97.14 | 93.52 | 100 | 97.80 |
Internal–external enhancement image | 100 | 98.02 | 99.12 | 100 | 94.78 | 100 | 86.60 | 96.04 | 92.05 | 96.80 | 94.40 |
Image Type | Accuracy (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
E | F | H | I | L | O | T | U | Y | Z | Overall | |
Raster building image | 84.00 | 84.00 | 86.50 | 100 | 86.50 | 98.50 | 82.00 | 89.50 | 85.00 | 97.00 | 89.10 |
Distance field enhancement image | 91.00 | 93.00 | 92.00 | 100 | 93.50 | 99.00 | 91.50 | 92.00 | 89.50 | 98.50 | 94.00 |
Shape Classification Method | Accuracy (%) | ||
---|---|---|---|
L | O | T | |
AlexNet [25] | 92.58 | 89.56 | 87.50 |
Inception V3 based on distance field | 93.50 | 99.00 | 91.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Yang, M.; Li, S.; Hu, H. Classifying the Shapes of Buildings by Combining Distance Field Enhancement and a Convolution Neural Network. ISPRS Int. J. Geo-Inf. 2024, 13, 411. https://doi.org/10.3390/ijgi13110411
Zou X, Yang M, Li S, Hu H. Classifying the Shapes of Buildings by Combining Distance Field Enhancement and a Convolution Neural Network. ISPRS International Journal of Geo-Information. 2024; 13(11):411. https://doi.org/10.3390/ijgi13110411
Chicago/Turabian StyleZou, Xinyan, Min Yang, Siyu Li, and Hai Hu. 2024. "Classifying the Shapes of Buildings by Combining Distance Field Enhancement and a Convolution Neural Network" ISPRS International Journal of Geo-Information 13, no. 11: 411. https://doi.org/10.3390/ijgi13110411
APA StyleZou, X., Yang, M., Li, S., & Hu, H. (2024). Classifying the Shapes of Buildings by Combining Distance Field Enhancement and a Convolution Neural Network. ISPRS International Journal of Geo-Information, 13(11), 411. https://doi.org/10.3390/ijgi13110411