GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method
Abstract
:1. Introduction
2. Study Area
3. Data—Methods
3.1. Data
3.2. Expert-Based Fuzzy Weighting (EFW) Method
- (a)
- Definition of linguistic variables and fuzzy numbers for LS classes in order to incorporate uncertainty in the analysis. All fuzzy numbers expressed as (ak, bk, ck, dk). The definition of these fuzzy numbers is shown in Table 1.
Fuzzy Variables (Susceptibility) | Fuzzy Numbers | Fuzzy Membership |
---|---|---|
Very High (VH) | (7, 10, 10, 10) | |
High (H) | (5, 7, 7, 10) | |
Moderate (M) | (2, 5, 5, 8) | |
Low (L) | (0, 3, 3, 5) | |
Very Low (VL) | (0, 0, 0, 3) |
- (b)
- Next, we invited three experts, with experience and scientific knowledge of the study area, to list a linguistic importance weight for every class of each factor. From these linguistic judgments we obtained the corresponding fuzzy numbers. Such judgments are inevitably subjective, but, by proposing, several possible scenarios, followed by the systematic testing and elimination of options, as a result of additional investigation and discussion, it is possible to develop reliable estimates. Experimental evidence suggests that group judgments; appear to be more accurate than judgments of a typical, group member [38]. The sum of these numbers is still a fuzzy number. Thus, we proceeded to the computation of the aggregated fuzzy weights of individual subclasses (Table 2).
- (c)
- After the defuzzification of the fuzzy weights of individual landslide susceptibility subclasses, we proceed to the computation of the normalized weights and the construction of the weight vector.
Layers (Factors) | Categories (Classes) | (Experts) Fuzzy Value | EFW Weight |
---|---|---|---|
Land cover | Artificial surfaces | (H,M,M) | 0.37 |
Agricultural areas | (M,H,H) | 0.41 | |
Forest and semi-natural land | (L,L,M) | 0.22 | |
Lithology | Phyllites/Gneiss (metamorphic) | (L,M,L) | 0.08 |
Limestones—Marbles | (L,L,L) | 0.06 | |
Volcanic | (M,M,M) | 0.11 | |
Schists (metamorphic) | (M,M,M) | 0.11 | |
Neogene | (H,VH,M) | 0.16 | |
Tertiary | (H,VH,M) | 0.16 | |
Flysch | (VH,VH,VH) | 0.22 | |
Cherts—Schists | (M,L,M) | 0.10 | |
Precipitation | <750 mm | (L,VL,M) | 0.09 |
750–880 mm | (M,L,H) | 0.16 | |
881–990 mm | (M,M,H) | 0.19 | |
991–1170 mm | (H,H,VH) | 0.26 | |
>1170 mm | (VH,VH,VH) | 0.30 | |
Seismic | <2.20 m/s2 | (L,VL,L) | 0.08 |
acceleration | 2.20–2.50 m/s2 | (L,L,L) | 0.10 |
2.51–2.90 m/s2 | (M,M,M) | 0.19 | |
2.91–3.10 m/s2 | (H,H,H) | 0.28 | |
>3.10 m/s2 | (VH,VH,VH) | 0.35 | |
Elevation | <132 m | (L,VL,L) | 0.08 |
132–330 m | (L,L,M) | 0.14 | |
33–600 m | (H,M,M) | 0.23 | |
601–880 m | (Μ,H,H) | 0.26 | |
>880 m | (M,VH,H) | 0.29 | |
Slope | <2° | (VL,VL,L) | 0.06 |
2–6° | (L,L,L) | 0.11 | |
7–10° | (M,M,M) | 0.19 | |
11–15° | (H,H,H) | 0.28 | |
>15° | (VH,VH,VH) | 0.36 | |
Aspect | Flat | (L,VL,M) | 0.11 |
North | (H,H,M) | 0.24 | |
East | (M,M,M) | 0.19 | |
South | (M,M,M) | 0.19 | |
West | (H,H,H) | 0.27 |
Parameter | Parameter Importance (Expert Judgement) | EFW Weight |
---|---|---|
Land cover | (M,M,H) | 0.11 |
Lithology | (VH,VH,H) | 0.17 |
Precipitation | (VH,VH,VH) | 0.18 |
Seismicity | (H,H,H) | 0.15 |
Elevation | (M,L,H) | 0.09 |
Slope | (VH,VH,VH) | 0.18 |
Aspect | (H,M,M) | 0.12 |
- (d)
- The last step is the aggregation of relative values, and the generation of the final expert-based landslide susceptibility map (Figure 2). This step was implemented by using the weighted linear combination method [60]. Therefore, each standardized factor is multiplied by its weight, and the results are summarized according to the following formula:
4. Results
Weight Change % | Change in Classification | ||||
---|---|---|---|---|---|
M to H | H to M | M to L | L to M | H to L/L to H | |
−20 | 8.78% | 6.55% | 6.03% | 6.08% | 0.14% |
−10 | 7.57% | 6.72% | 5.92% | 6.21% | 0.13% |
−5 | 7.48% | 6.52% | 5.98% | 6.17% | 0.13% |
+5 | 7.43% | 6.38% | 6.11% | 5.97% | 0.14% |
+10 | 7.40% | 6.48% | 6.07% | 6.05% | 0.14% |
+20 | 8.78% | 6.55% | 6.03% | 6.08% | 0.14% |
Weight Change% | Change in Classification | ||||
---|---|---|---|---|---|
M to H | H to M | M to L | L to M | H to L/L to H | |
−20 | 7.47% | 6.71% | 6.19% | 6.33% | 0.14% |
−10 | 7.30% | 6.51% | 5.99% | 6.21% | 0.13% |
−5 | 7.47% | 6.39% | 6.00% | 6.21% | 0.13% |
+5 | 7.30% | 6.48% | 5.92% | 5.90% | 0.13% |
+10 | 7.61% | 6.38% | 5.84% | 5.98% | 0.13% |
+20 | 7.74% | 6.22% | 5.99% | 5.92% | 0.15% |
Weight Change % | Change in Classes of Landslide Susceptibility | ||||
---|---|---|---|---|---|
M to H | H to M | M to L | L to M | H to L/L to H | |
−20 | 7.59% | 6.32% | 5.97% | 5.96% | 0.13% |
−10 | 7.50% | 6.30% | 5.84% | 5.94% | 0.13% |
−5 | 7.21% | 6.45% | 5.88% | 5.96% | 0.13% |
+5 | 7.48% | 6.42% | 6.17% | 5.83% | 0.14% |
+10 | 7.48% | 6.52% | 6.20% | 6.08% | 0.14% |
+20 | 7.44% | 6.76% | 6.19% | 6.13% | 0.13% |
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zillman, J. Report by the Director of Meteorology on the Bureau of Meteorology’s Forecasting and Warning Performance for the Sydney Hailstorm of 14 April 1999. Bur. Meteorol. 1999. Available online: http://www.bom.gov.au/inside/services_policy/storms/sydney_hail/hail_report.shtml (accessed on 18 November 2013).
- Gokceoglu, C.; Sonmez, H.; Nefeslioglu, H.A.; Duman, T.Y.; Can, T. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng. Geol. 2005, 81, 65–83. [Google Scholar] [CrossRef]
- Gutiιrrez, F.; Soldati, M.; Audemard, F.; Balteanu, D. Recent advances in landslide investigation: Issues and perspectives. Geomorphology 2010, 124, 95–101. [Google Scholar] [CrossRef]
- Van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide hazard and risk zonation—Why is it still so difficult? Bull. Eng. Geol. Environ. 2006, 65, 167–184. [Google Scholar] [CrossRef]
- Vergari, F.; Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Landslide susceptibility assessment in the Upper Orcia Valley (Southern Tuscany, Italy) through conditional analysis: A contribution to the unbiased selection of causal factors. Nat. Hazard. Earth Syst. Sci. 2011, 11, 1475–1497. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Van Westen, C.J. The modeling of landslide hazards using GIS. Surv. Geophys. 2000, 21, 241–255. [Google Scholar] [CrossRef]
- Crozier, M.J.; Glade, T. Landslide Hazard and Risk: Issues, Concepts and Approach. In Landslide Risk Assessment; Glade, T., Anderson, M.G., Crozier, M.J., Eds.; John Wiley: New York, NY, USA, 2005; pp. 1–40. [Google Scholar]
- Santacana, N.; Baeza, B.; Corominas, J.; De Paz, A.; Marturia, J. A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees Spain). Nat. Hazard. 2003, 30, 281–295. [Google Scholar]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Magliulo, P.; Lisio, A.; Russo, F.; Zelano, A. Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: A case study in southern Italy. Nat. Hazard. 2008, 3, 411–435. [Google Scholar] [CrossRef]
- Hasekioǧullari, G.D.; Ercanoglu, M. A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Nat. Hazard. 2012, 63, 1157–1179. [Google Scholar] [CrossRef]
- Rozos, D.; Bathrellos, G.D.; Skillodimou, H.D. Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: A case study from the Eastern Achaia County of Peloponnesus, Greece. Environ. Earth Sci. 2011, 63, 49–63. [Google Scholar] [CrossRef]
- Papathanassiou, G.; Valkaniotis, I.; Ganas, A.; Pavlides, S. GIS-based statistical analysis of the spatial distribution, of earthquake-induced landslides in the island, of Lefkada, Ionian Islands, Greece. Landslides 2012, 10, 771–783. [Google Scholar]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landf. 1991, 16, 427–445. [Google Scholar] [CrossRef]
- Komac, M.; Ribicic, M. Landslide susceptibility map of Slovenia at scale 1:250,000. Geologija 2006, 49, 295–309. [Google Scholar] [CrossRef]
- Das, O.; Sonmez, H.; Gokceoglu, C.; Nefeslioglu, H. A study on the effect of the ground acceleration on landslide susceptibility maps. Geophys. Res. Abstr. 2010, 12. EGU2010-5885-1. [Google Scholar]
- Pareek, N.; Sharma, M.L.; Arora, M.K. Impact of seismic factors on landslide susceptibility zonation: A case study in part of Indian Himalayas. Landslides 2010, 7, 191–201. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. Preparation of a Landslide Susceptibility Map of Summit County, Ohio, USA, Using Numerical Models. In Proceedings of the 10th IAEG Congress, Nottingham, UK, 6–10 September 2006. Paper No. 660..
- He, Y.; Beighley, R.E. GIS-based regional landslide susceptibility mapping: A case study in southern California. Earth Surf. Process. Landf. 2008, 33, 380–393. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T.; Rafiq, L. GIS-Based Landslide Susceptibility Mapping: A Case Study in Bostan Abad County, Iran. In Proceedings of the GI4DM Conference, Antalya, Turkey, 3–8 May 2011.
- Van Westen, C.J.; Rengers, N.; Soeters, R. Use of geomorphological information in indirect landslide susceptibility assessment. Nat. Hazard. 2003, 30, 399–419. [Google Scholar]
- Ayalew, L.; Yamagishi, H.; Maruib, H.; Takami, K. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng. Geol. 2005, 81, 432–445. [Google Scholar]
- Thiery, Y.; Malet, J.-P.; Sterlacchini, S.; Puissant, A.; Maquaire, O. Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology 2007, 92, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Pellegrini, G.B.; Surian, N. Geomorphological study of the Fadalto landslide Venetian Prealps Italy. Landslides Eur. Union 1996, 15, 337–350. [Google Scholar]
- Nielsen, T.H.; Wright, R.H.; Vlasic, T.C.; Spangle, W.E. Relative Slope Stability and Land-Use Planning in the San Francisco Bay Region California; Professional Paper; U.S. Govt. Print. Off.: Washington, DC, USA, 1979. [Google Scholar]
- Demir, G.; Aytekin, M.; Akgün, A.; Ikizler, S.B.; Tatar, O. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods. Nat. Hazard. 2013, 65, 1481–1506. [Google Scholar] [CrossRef]
- Pathak, S.; Poudel, R.K.; Kansakar, B.R. Application of Probabilistic Approach in Rock Slope Stability Analysis—An Experience from Nepal Disaster Mitigation of Debris Flows, Slope Failures and Landslides. In Proceedings of the INTERPRAEVENT International Symposium Disaster Mitigation of Debris Flows, Slope Failures and Landslides, Niigata, Japan, 25–27 September 2006; pp. 797–802.
- Thiebes, B.; Bell, R.; Glade, T. Deterministic Landslide Susceptibility Analysis Using SINMAP—Case Study in the Swabian Alb Germany. In Proceedings of the Conference “Geomorphology for the Future”, Obergurgl, Austria, 2–7 September 2007; pp. 177–184.
- Oh, H.-J.; Lee, S.; Soedradjat, G.M. Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environ. Earth Sci. 2010, 60, 1317–1328. [Google Scholar] [CrossRef]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Piacentini, D.; Troiani, F.; Soldati, M.; Notarnicola, C.; Savelli, D.; Schneiderbauer, S.; Strada, C. Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology 2012, 151–152, 196–206. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide risk analysis using artificial neural net-work model focusing on different training sites. Int. J. Phys. Sci. 2009, 4, 1–15. [Google Scholar]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazard. 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Akgün, A.; Bulut, F. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environ. Geol. 2007, 51, 1377–1387. [Google Scholar] [CrossRef]
- Wang, W.-D.; Guo, J.; Fang, L.-G.; Chang, X.-S. A subjective and objective integrated weighting method for landslides susceptibility mapping based on GIS. Environ. Earth Sci. 2012, 65, 1705–1714. [Google Scholar] [CrossRef]
- Lee, E.M.; Jones, D.K.C. Landslide Risk Assessment; Thomas Telford: London, UK, 2004; p. 161. [Google Scholar]
- Powell, G. Landslide risk management concepts and quidelines. Aust. Geomech. 2000, 35, 49–52. [Google Scholar]
- Wang, W.D.; Xie, C.M.; Du, X.G. Landslides susceptibility mapping based on geographical information system, GuiZhou, south-west China. Environ. Geol. 2009, 58, 33–43. [Google Scholar] [CrossRef]
- Dutta, P.J.; Sarma, S. Landslide susceptibility zoning of the Kala-Pahar hill, Guwahati, Assam state, (India), using a GIS-based heuristic technique. Int. J. Remote Sens. Geosci. 2013, 2, 49–55. [Google Scholar]
- Pnevmatikos, J.D.; Katsoulis, B.D. The changing rainfall regime in Greece and its impact on climatological means. Meteorol. Appl. 2006, 13, 331–345. [Google Scholar] [CrossRef]
- Stournaras, G.; Tsimpidis, G.; Tsoumanis, P.; Yannatos, G.; Guillande, R. Instability phenomena in the Neogenne deposits of Northern Peloponnese. Bull. Eng. Geol. Environ. 1998, 57, 65–68. [Google Scholar] [CrossRef]
- Papathanasiou, G. Estimating slope failure potential in an earthquake prone area: A case study at Skolis Mountain, NW Peloponnesus, Greece. Bull. Eng. Geol. Environ. 2012, 71, 187–194. [Google Scholar] [CrossRef]
- Heymann, Y.; Steenmans, C.; Croisille, G.; Bossard, M. CORINE Land Cover: Technical Guide; Office for Official Publications of the European Communities: Luxembourg, 1994; p. 136. [Google Scholar]
- Huade, G.; Wilson, J.L.; Makhnin, O. Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J. Hydrometeorol. 2005, 6, 1018–1031. [Google Scholar] [CrossRef]
- Arjun, C.R.; Kumar, A. Artificial neural network-based estimation of peak ground acceleration. ISET J. Earthq. Technol. 2009, 46, 19–28. [Google Scholar]
- Papadopoulos, G.A.; Plessa, A. Magnitude-distance relations for earthquake-induced landslides in Greece. Eng. Geol. 2000, 58, 377–386. [Google Scholar] [CrossRef]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A. Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 2008, 94, 1–9. [Google Scholar] [CrossRef]
- Koukis, G.; Tsiambaos, G.; Sabatakakis, N. Landslides Movements in Greece: Engineering Geological Characteristics and Environmental Consequences. In Proceedings of the International Symposium of Engineering geology and the Environment, Athens, Greece, 23–27 June 1997; Balkema: Athens, Greece, 1997; pp. 789–793. [Google Scholar]
- Koukouvelas, I.K.; Doutsos, T. The Effects of Active Faults on the Generation of Landslides in NW Peloponnese, Greece. In Engineering Geology and the Environment; Marinos, P.G., Koukis, G.C., Tsiambaos, G.C., Stournaras, G.C., Eds.; Balkema: Rotterdam, The Netherlands, 1997; pp. 799–804. [Google Scholar]
- Koukouvelas, I. The Egion fault, earthquake-related and long-term deformation, Gulf of Corinth, Greece. J. Geodyn. 1998, 6, 501–513. [Google Scholar] [CrossRef]
- Dounias, G.; Fikiris, I.F.; Kollios, A.; Kabbadas, M.; Marinos, P. The Nemea Landslide. Trigger Mechanism—Remedial Measures. In Proceedings of the 5th Panellenic Conference of Geotechnics and Geoenvironmental Engineering, Xanthi, Greece, 31 May–2 June 2006.
- Sabatakakis, N.; Koukis, G.; Vassiliades, E.; Lainas, S. Landslide susceptibility zonation in Greece. Nat. Hazard. 2013, 65, 523–543. [Google Scholar] [CrossRef]
- Christoulas, S.; Kalteziotis, N.; Gassios, E.; Sabatakakis, N.; Tsiambaos, G. Instability Phenomena in Weathered Flysch in Greece. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; Volume 1, pp. 103–108.
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Dikau, R.; Brunsden, D.; Schrott, L.; Ibsen, M. Landslide Recognition: Identification, Movement and Causes; Wiley: Chichester, UK, 1996; p. 251. [Google Scholar]
- Fell, R. Landslide risk assessment and acceptable risk. Can. Geotech. J. 1994, 31, 261–272. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Chen, Y.; Yu, J.; Khan, S. Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environ. Model. Softw. 2010, 25, 1582–1591. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.; Carrara, A. Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol. 2010, 111, 62–72. [Google Scholar] [CrossRef]
- Lari, S.; Frattini, P.; Crosta, G.B. Integration of natural and technological risks in Lombardy, Italy. Nat. Hazard. Earth Syst. Sci. 2009, 9, 2085–2106. [Google Scholar] [CrossRef]
- Intarawichian, N.; Dasananda, S. Analytical hierarchy process for landslide susceptibility mapping in Lower Mae Chaem Watershed, Northern Thailand. Suranaree J. Sci. Technol. 2010, 17, 277–292. [Google Scholar]
- Mezughi, T.H.; Akhir, J.M.; Rafek, A.G.; Abdullah, I. Analytical hierarchy process method for mapping landslide susceptibility to an area along the E-W highway (Gerik-Jeli), Malaysia. Asian J. Earth Sci. 2012, 5, 13–24. [Google Scholar] [CrossRef]
- Chang, N.; Parvathinathan, G.; Breeden, J. Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. J. Environ. Manag. 2008, 87, 139–153. [Google Scholar]
- Fernández, D.S.; Lutz, M.A. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Eng. Geol. 2010, 111, 90–98. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method. ISPRS Int. J. Geo-Inf. 2014, 3, 523-539. https://doi.org/10.3390/ijgi3020523
Chalkias C, Ferentinou M, Polykretis C. GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method. ISPRS International Journal of Geo-Information. 2014; 3(2):523-539. https://doi.org/10.3390/ijgi3020523
Chicago/Turabian StyleChalkias, Christos, Maria Ferentinou, and Christos Polykretis. 2014. "GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method" ISPRS International Journal of Geo-Information 3, no. 2: 523-539. https://doi.org/10.3390/ijgi3020523
APA StyleChalkias, C., Ferentinou, M., & Polykretis, C. (2014). GIS Supported Landslide Susceptibility Modeling at Regional Scale: An Expert-Based Fuzzy Weighting Method. ISPRS International Journal of Geo-Information, 3(2), 523-539. https://doi.org/10.3390/ijgi3020523