Mapping of Asbestos Cement Roofs and Their Weathering Status Using Hyperspectral Aerial Images
Abstract
:1. Introduction
- the mapping of AC roofs;
- the association of the AC presence to the cadastre in order to provide the cadastral building references to the municipalities;
- the assessment of the weathering status of each AC roof through the definition of a novel operative spectral index (i.e., ISD), which is related to the vegetation component that colonize weathered roofs.
2. Materials and Methods
2.1. Airborne Campaign and Ground Data Acquisition
2.2. Image Processing
2.3. Classification Procedure and Accuracy Evaluation
2.4. Index of Surface Deterioration
3. Results and Discussion
3.1. Asbestos Cement Spectral Analysis
3.2. Asbestos Cement Roof Map and Index of Surface Deterioration Analysis
Step 1 | AC | Concrete | Other | Tiles | Not Classified | Total | Accuracy (%) | |
---|---|---|---|---|---|---|---|---|
RUN 2 | AC classification | 72 | 0 | 28 | 0 | 0 | 100 | PA = 72.0 |
AC reference | 72 | 5 | 0 | 0 | 2 | 79 | UA = 91.1 | |
RUN 3 | AC classification | 38 | 0 | 12 | 0 | 0 | 50 | PA = 76.0 |
AC reference | 38 | 2 | 0 | 0 | 0 | 40 | UA = 95.0 | |
RUN 4 | AC classification | 41 | 0 | 12 | 0 | 0 | 53 | PA = 77.4 |
AC reference | 41 | 5 | 0 | 0 | 1 | 47 | UA = 87.2 | |
RUN 5 | AC classification | 28 | 0 | 22 | 0 | 0 | 50 | PA = 56.0 |
AC reference | 28 | 4 | 0 | 0 | 0 | 32 | UA = 87.5 |
Step 2 | AC | Concrete | Other | Tiles | Not Classified | Total | Accuracy (%) | |
---|---|---|---|---|---|---|---|---|
RUN 2 | AC classification | 70 | 0 | 12 | 0 | 0 | 82 | PA = 85.4 |
AC reference | 70 | 5 | 0 | 0 | 4 | 79 | UA = 88.6 | |
RUN 3 | AC classification | 37 | 0 | 6 | 0 | 0 | 43 | PA = 86.0 |
AC reference | 37 | 2 | 0 | 0 | 1 | 40 | UA = 92.5 | |
RUN 4 | AC classification | 39 | 0 | 6 | 0 | 0 | 45 | PA = 86.7 |
AC reference | 39 | 5 | 0 | 0 | 1 | 45 | UA = 86.2 | |
RUN 5 | AC classification | 28 | 0 | 4 | 0 | 0 | 32 | PA = 87.5 |
AC reference | 28 | 4 | 0 | 0 | 0 | 32 | UA = 87.5 |
Categorical Predictors | F Value | p Value |
---|---|---|
year | F5,48 = 6.038 | p < 0.001 |
exposure | F1,48 = 33.378 | p < 0.001 |
year × exposure | F5,48 = 0.366 | p = 0.869 |
3.3. Data Handling in a Geographic Information System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Favero-Longo, S.E.; Turci, F.; Fubini, B.; Castelli, D.; Piervittori, R. Lichen deterioration of asbestos and asbestiform minerals of serpentinite rocks in Western Alps. Int. Biodeterior. Biodegrad. 2013, 84, 342–350. [Google Scholar] [CrossRef]
- Roggli, V.L.; Vollmer, R.T. Twenty-five years of fiber analysis: What have we learned? Hum. Pathol. 2008, 39, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Magnani, C.; Ferrante, D.; Barone-Adesi, F.; Bertolotti, M.; Todesco, A.; Mirabelli, D.; Terracini, B. Cancer risk after cessation of asbestos exposure: A cohort study of Italian asbestos cement workers. Occup. Environ. Med. 2008, 65, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, D.; Bertolotti, M.; Todesco, A.; Mirabelli, D.; Terracini, B.; Magnani, C. Cancer mortality and incidence of mesothelioma in a cohort of wives of asbestos workers in Casale Monferrato, Italy. Environ. Health Perspect. 2007, 115, 1401–1405. [Google Scholar] [CrossRef] [PubMed]
- Raffn, E.; Villadsen, E.; Engholm, G.; Lynge, E. Lung cancer in asbestos cement workers in Denmark. Occup. Environ. Med. 1996, 53, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Hillerdal, G. Mesothelioma: Cases associated with non-occupational and low dose exposures. Occup. Environ. Med. 1999, 56, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Fiumi, L.; Congedo, L.; Meoni, C. Developing expeditious methodology for mapping asbestos-cement roof coverings over the territory of Lazio Region. Appl. Geomat. 2014, 6, 37–48. [Google Scholar] [CrossRef]
- Frassy, F.; Candiani, G.; Rusmini, M.; Maianti, P.; Marchesi, A.; Nodari, F.R.; Via, G.D.; Albonico, C.; Gianinetto, M. Mapping asbestos-cement roofing with hyperspectral remote sensing over a large mountain region of the Italian western Alps. Sensors 2014, 14, 15900–15913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiumi, L.; Campopiano, A.; Casciardi, S.; Ramires, D. Method validation for the identification of asbestos-cement roofing. Appl. Geomat. 2012, 4, 55–64. [Google Scholar] [CrossRef]
- Marino, C.M.; Panigada, C.; Busetto, L. Airborne hyperspectral remote sensing applications in urban areas: asbestos concrete sheeting identification and mapping. In Proceedings of the Remote Sensing and Data Fusion over Urban Areas, IEEE/ISPRS Joint Workshop 2001, Rome, Italy, 8 November 2001–9 November 2001; pp. 212–216.
- Szabo, S.; Burai, P.; Kovacs, Z.; Szabo, G.; Kerenyi, A.; Fazekas, I.; Paladi, M.; Buday, T. Testing algorithms for the identification of asbestos roofing based on hyperspectral data. Environ. Eng. Manag. J. 2014, 13, 2875–2880. [Google Scholar]
- Bassani, C.; Cavalli, R.M.; Cavalcante, F.; Cuomo, V.; Palombo, A.; Pascucci, S.; Pignatti, S. Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sens. Environ. 2007, 109, 361–378. [Google Scholar] [CrossRef]
- Favero-Longo, S.E.; Castelli, D.; Fubini, B.; Piervittori, R. Lichens on asbestos-cement roofs: Bioweathering and biocovering effects. J. Hazard. Mater. 2009, 162, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Airborne Imagery; Technical Report; German Aerospace Center (DLR): Wessling, Germany, 2011; p. 194. [Google Scholar]
- Gao, B.C. An operational method for estimating signal to noise ratiosfrom data acquired with imaging spectrometers. Remote Sens. Environ. 1993, 43, 23–33. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A Transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image-Processing System (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Thomas, J.R.; Gausman, H.W. Leaf reflectance VS. leaf chlorophyll and carotenoid concentrations for eight crops. Agron. J. 1977, 69, 799–802. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cilia, C.; Panigada, C.; Rossini, M.; Candiani, G.; Pepe, M.; Colombo, R. Mapping of Asbestos Cement Roofs and Their Weathering Status Using Hyperspectral Aerial Images. ISPRS Int. J. Geo-Inf. 2015, 4, 928-941. https://doi.org/10.3390/ijgi4020928
Cilia C, Panigada C, Rossini M, Candiani G, Pepe M, Colombo R. Mapping of Asbestos Cement Roofs and Their Weathering Status Using Hyperspectral Aerial Images. ISPRS International Journal of Geo-Information. 2015; 4(2):928-941. https://doi.org/10.3390/ijgi4020928
Chicago/Turabian StyleCilia, Chiara, Cinzia Panigada, Micol Rossini, Gabriele Candiani, Monica Pepe, and Roberto Colombo. 2015. "Mapping of Asbestos Cement Roofs and Their Weathering Status Using Hyperspectral Aerial Images" ISPRS International Journal of Geo-Information 4, no. 2: 928-941. https://doi.org/10.3390/ijgi4020928