A Virtual Geographic Environment for Debris Flow Risk Analysis in Residential Areas
Abstract
:1. Introduction
2. Methods
2.1. Overall Framework
2.2. Multiscale Parallel Optimization
2.3. Quantitative Risk Assessment
2.4. Real-Time Visualization of Disaster Information
3. Results and Analysis
3.1. Case Area
3.2. Prototype System Development
3.3. Simulation Optimization Analysis
3.4. Real-Time Interactive Analysis
4. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iverson, R.M.; Reid, M.E.; LaHusen, R.G. Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 1997, 25, 85–138. [Google Scholar] [CrossRef]
- Borga, M.; Stoffel, M.; Marchi, L.; Marra, F.; Jakob, M. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. J. Hydrol. 2014, 518, 194–205. [Google Scholar] [CrossRef]
- Hong, H.Y.; Pradhan, B.; Xu, C.; Bui, D.T. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 2015, 133, 266–281. [Google Scholar] [CrossRef]
- Hürlimann, M.; Copons, R.; Altimir, J. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology 2006, 78, 359–372. [Google Scholar] [CrossRef]
- Aronica, G.T.; Biondi, G.; Brigandì, G.; Cascone, E.; Lanza, S.; Randazzo, G. Assessment and mapping of debris-flow risk in a small catchment in eastern Sicily through integrated numerical simulations and GIS. Phys. Chem. Earth Parts A/B/C 2012, 49, 52–63. [Google Scholar] [CrossRef]
- Lin, J.W.; Chen, C.W.; Peng, C.Y. Potential hazard analysis and risk assessment of debris flow by fuzzy modeling. Nat. Hazards 2012, 64, 273–282. [Google Scholar] [CrossRef]
- Cui, P.; Xiang, L.Z.; Zou, Q. Risk assessment of highways affected by debris flows in Wenchuan earthquake area. J. Mt. Sci. 2013, 10, 173–189. [Google Scholar] [CrossRef]
- Fuchs, S.; Heiss, K.; Hübl, J. Towards an empirical vulnerability function for use in debris flow risk assessment. Nat. Hazards Earth Syst. Sci. 2007, 7, 495–506. [Google Scholar] [CrossRef]
- Liu, K.F.; Li, H.C.; Hsu, Y.C. Debris flow hazard assessment with numerical simulation. Nat. Hazards 2009, 49, 137–161. [Google Scholar] [CrossRef]
- Hu, K.H.; Wei, F.Q.; He, Y. Application of particle model in risk zoning of debris flows. J. Mt. Sci. 2003, 21, 726–730. [Google Scholar]
- Liu, X.; Lei, J. A method for assessing regional debris flow risk: An application in Zhaotong of Yunnan province (SW China). Geomorphology 2003, 52, 181–191. [Google Scholar] [CrossRef]
- Pradhan, B. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv. Space Res. 2010, 45, 1244–1256. [Google Scholar] [CrossRef]
- Wei, F.Q.; Gao, K.C.; Hu, K.H.; Li, Y.; Gardner, J.S. Relationships between debris flows and earth surface factors in Southwest China. Environ. Geol. 2008, 55, 619–627. [Google Scholar] [CrossRef]
- Hu, K.; Wei, F.; Li, Y. Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surf. Process. Landf. 2011, 36, 1268–1278. [Google Scholar] [CrossRef]
- Gentile, F.; Bisantino, T.; Liuzzi, G.T. Debris-flow risk analysis in south Gargano watersheds (Southern-Italy). Nat. Hazards 2008, 44, 1–17. [Google Scholar] [CrossRef]
- Calvo, B.; Savi, F. A real-world application of Monte Carlo procedure for debris flow risk assessment. Comput. Geosci. 2009, 35, 967–977. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Esaki, T. GIS-based two-dimensional numerical simulation of rainfall-induced debris flow. Nat. Hazards Earth Syst. Sci. 2008, 8, 47–58. [Google Scholar] [CrossRef]
- Ouyang, C.; He, S.; Tang, C. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area. Eng. Geol. 2015, 194, 62–72. [Google Scholar] [CrossRef]
- D’Ambrosio, D.; Spataro, W.; Iovine, G. Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: An application to debris flows. Comput. Geosci. 2006, 32, 861–875. [Google Scholar] [CrossRef]
- Lacasta, A.; Juez, C.; Murillo, J.; Garcia-Navarro, P. An efficient solution for hazardous geophysical flows simulation using GPUs. Comput. Geosci. 2015, 78, 63–72. [Google Scholar] [CrossRef]
- Sanders, J.; Kandrot, E. CUDA by Example: An Introduction to General-Purpose GPU Programming; Addison-Wesley Professional: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Yang, F.K.; Guan, Q.; Zhang, Z.G.; Li, X.T. Debris-flow risky district decision system based on socket distributed-computing. Comput. Eng. Des. 2010, 31, 4909–4912. [Google Scholar]
- Yang, S.; Guan, Q. CUDA-based simulation of debris flow. Comput. Eng. Des. 2011, 32, 4231–4236. [Google Scholar]
- Spataro, D.; D’Ambrosio, D.; Filippone, G.; Rongo, R.; Spataro, W.; Marocco, D. The new SCIARA-fv3 numerical model and acceleration by GPGPU strategies. Int. J. High Perform. Comput. Appl. 2017, 31, 163–176. [Google Scholar] [CrossRef]
- Oliverio, M.; Spataro, W.; D’Ambrosio, D.; Rongo, R.; Spingola, G.; Trunfio, G.A. OpenMP parallelization of the SCIARA Cellular Automata lava flow model: Performance analysis on shared-memory computers. Procedia Comput. Sci. 2011, 4, 271–280. [Google Scholar] [CrossRef]
- Amritkar, A.; Tafti, D.; Liu, R.; Kufrin, R.; Chapman, B. OpenMP parallelism for fluid and fluid-particulate systems. Parallel Comput. 2012, 38, 501–517. [Google Scholar] [CrossRef]
- Yu, M.; Huang, Y.; Xu, Q.; Guo, P.; Dai, Z.L. Application of virtual earth in 3D terrain modeling to visual analysis of large-scale geological disasters in mountainous areas. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Lin, H.; Chen, M.; Lu, G.N.; Zhu, Q.; Gong, J.H.; You, X.; Wen, Y.N.; Xu, B.L.; Hu, M.Y. Virtual geographic environments (VGEs): A new generation of geographic analysis tool. Earth Sci. Rev. 2013, 126, 74–84. [Google Scholar] [CrossRef]
- Chen, M.; Lin, H.; Kolditz, O.; Chen, C. Developing dynamic virtual geographic environments (VGEs) for geographic research. Environ. Earth Sci. 2015, 74, 6975–6980. [Google Scholar] [CrossRef]
- Xu, B.L.; Lin, H.; Chiu, L.S.; Hu, Y.; Zhu, J.; Hu, M.Y.; Cui, W.N. Collaborative virtual geographic environments: A case study of air pollution simulation. Inf. Sci. 2011, 181, 2231–2246. [Google Scholar] [CrossRef]
- Zhu, J.; Yin, L.Z.; Wang, J.H.; Zhang, H.; Hu, Y.; Liu, Z.J. Dam-break flood routing simulation and scale effect analysis based on virtual geographic environment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 105–113. [Google Scholar] [CrossRef]
- Liang, J.M.; Gong, J.H.; Sun, J.; Liu, J. A customizable framework for computing sky view factor from large-scale 3D city models. Energy Build. 2017, 149, 38–44. [Google Scholar] [CrossRef]
- Yin, L.Z.; Zhu, J.; Zhang, X.; Li, Y.; Wang, J.H.; Zhang, H.; Yang, X.F. Visual analysis and simulation of dam-break flood spatiotemporal process in a network environment. Environ. Earth Sci. 2015, 74, 7133–7146. [Google Scholar] [CrossRef]
- Shao, S.D.; Wang, L.X. Debris flow simulation and hazard zone mapping in mountainous regions of Beijing. J. Beijing For. Univ. 1999, 21, 11–16. [Google Scholar]
- Wang, G.Q.; Shao, S.D.; Fei, X.J. Particle model for alluvial fan formation. In Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment; ASCE: Reston, VA, USA, 1997; pp. 143–152. [Google Scholar]
- Zou, Q.; Cui, P.; Zeng, C.; Tang, J.X.; Regmi, A.D. Dynamic process-based risk assessment of debris flow on a local scale. Phys. Geogr. 2016, 37, 132–152. [Google Scholar] [CrossRef]
- Qiao, C.J.; Li, J.S.; Tian, Z.S. A new approach for fluid dynamics simulation: The Short-lived Water Cuboid Particle model. J. Hydrol. 2016, 540, 437–456. [Google Scholar] [CrossRef]
- Jin, H.L.; Gao, J.X. An Algorithm for Real-Time Visualization of Large-Scale Terrain. J. Inst. Surv. Mapp. 2006, 23, 65–68. [Google Scholar]
- Liu, G.X.; Dai, E.F.; Wu, S.H.; Wu, W.X. A study on theory and method in debris flow risk assessment. Prog. Geogr. 2012, 31, 383–391. [Google Scholar]
- Jiang, L.L.; Qi, Q.W.; Zhang, A. Color on emergency mapping. In Proceedings of the Geoinformatics 2007: Cartographic Theory and Models, Nanjing, China, 25–27 May 2007; SPIE: Bellingham, WA, USA, 2007; Volume 6751, p. 675104. [Google Scholar]
- Zhu, J.; Tang, C.; Chang, M.; Le, M.H.; Huang, X. Field Observations of the Disastrous 11 July 2013 Debris Flows in Qipan Gully, Wenchuan Area, Southwestern China. In Engineering Geology for Society and Territory—Volume 2; Springer: Cham, Switzerland, 2015; pp. 531–535. [Google Scholar]
- Zeng, C. Vulnerability Assessment of Building to Debris Flow Hazard. Ph.D. Thesis, University of Chinese Academy of Sciences, Chengdu, China, 2014. [Google Scholar]
- Longley, P.A.; Batty, M. Spatial Analysis: Modelling in a GIS Environment; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Maguire, D.J.; Batty, M.; Goodchild, M.F. GIS, Spatial Analysis, and Modeling; Esri Press: Redlands, CA, USA, 2005. [Google Scholar]
- Lü, G.N. Geographic analysis-oriented Virtual Geographic Environment: Framework, structure and functions. Sci. China Earth Sci. 2011, 54, 733–743. [Google Scholar] [CrossRef]
- Wang, Q.J.; Gao, Y.; Li, C.H. Research on Multi-Core-Based Multitask parallel processing Technology. Comput. Appl. Softw. 2012, 29, 141–143. [Google Scholar]
Cross Sections | Actual Flow Velocities | Simulated Flow Velocities (5 m) | Average Deviation | Simulated Flow Velocities (10 m) | Average Deviation | Simulated Flow Velocities (20 m) | Average Deviation | Simulated Flow Velocities (30 m) | Average Deviation |
---|---|---|---|---|---|---|---|---|---|
K1–K4 | 7.8–11.6 m/s | 7.4–11.5 m/s | 3.0% | 8.1–12.0 m/s | 3.6% | 8.8–12.5 m/s | 10.3% | 11.0–12.5 m/s | 24.4% |
K4–K6 | 6.2–7.8 m/s | 6.2–7.3 m/s | 3.2% | 6.1–8.3 m/s | 4.0% | 5.2–8.2 m/s | 10.6% | 7.0–12.3 m/s | 35.3% |
K6–K8 | 4.6–7.5 m/s | 4.7–7.6 m/s | 1.8% | 5.2–7.5 m/s | 6.5% | 5.0–8.8 m/s | 13.0% | 4.8–12.1 m/s | 32.8% |
K8–K10 | 4.1–6.6 m/s | 4.0–5.5 m/s | 9.6% | 4.6–6.5 m/s | 6.9% | 4.4–7.2 m/s | 8.2% | 6.3–12.1 m/s | 68.5% |
K10–K11 | 0–4.28 m/s | 0–4.6 m/s | 3.7% | 0–4.7 m/s | 4.9% | 0–4.8 m/s | 6.1% | 0–9.8 m/s | 64.5% |
Reference Points | Actual Flow Depths | Simulated Flow Depths (5 m) | Average Deviation | Simulated Flow Depths (10 m) | Average Deviation | Simulated Flow Depths (20 m) | Average Deviation | Simulated Flow Depths (30 m) | Average Deviation |
---|---|---|---|---|---|---|---|---|---|
A | 5–8 m | 5.3–7.7 m | 4.9% | 5.2–7.2 m | 7.0% | 4.2–7.1 m | 13.6% | 1.4–4.2 m | 59.8% |
B | 2–4 m | 2.2–4.5 m | 11.3% | 1.8–4.6 m | 12.5% | 1.7–3.7 m | 15.0% | 1.5–2.5 m | 31.3% |
C | 4–6 m | 3.3–5.9 m | 9.6% | 3.7–6.5 m | 7.9% | 3.6–6.5 m | 9.2% | 1.2–2.3 m | 65.8% |
D | 3–6 m | 3.1–6.5 m | 5.8% | 3.3–6.4 m | 8.3% | 2.8–7.2 m | 13.3% | 2.2–6.8 m | 20.0% |
Grid Cell Size | CPU (min) | OpenMP (min) | Time of a Cycle Calculation (ms) | Speedup Ratio |
---|---|---|---|---|
5 m | 43.07 | 12.16 | 51 | 3.54 |
10 m | 5.53 | 1.71 | 15 | 3.23 |
20 m | 0.65 | 0.29 | 5 | 2.24 |
30 m | 0.23 | 0.10 | 3 | 2.30 |
Risk Degree | Risk Area | Risk Residential Area | Risk Roads |
---|---|---|---|
Low risk | 420,000 m2 | 30,500 m2 | 4900 m |
Medium risk | 120,000 m2 | 39,400 m2 | 1800 m |
High risk | 106,000 m2 | 36,700 m2 | 900 m |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, L.; Zhu, J.; Li, Y.; Zeng, C.; Zhu, Q.; Qi, H.; Liu, M.; Li, W.; Cao, Z.; Yang, W.; et al. A Virtual Geographic Environment for Debris Flow Risk Analysis in Residential Areas. ISPRS Int. J. Geo-Inf. 2017, 6, 377. https://doi.org/10.3390/ijgi6110377
Yin L, Zhu J, Li Y, Zeng C, Zhu Q, Qi H, Liu M, Li W, Cao Z, Yang W, et al. A Virtual Geographic Environment for Debris Flow Risk Analysis in Residential Areas. ISPRS International Journal of Geo-Information. 2017; 6(11):377. https://doi.org/10.3390/ijgi6110377
Chicago/Turabian StyleYin, Lingzhi, Jun Zhu, Yi Li, Chao Zeng, Qing Zhu, Hua Qi, Mingwei Liu, Weilian Li, Zhenyu Cao, Weijun Yang, and et al. 2017. "A Virtual Geographic Environment for Debris Flow Risk Analysis in Residential Areas" ISPRS International Journal of Geo-Information 6, no. 11: 377. https://doi.org/10.3390/ijgi6110377
APA StyleYin, L., Zhu, J., Li, Y., Zeng, C., Zhu, Q., Qi, H., Liu, M., Li, W., Cao, Z., Yang, W., & Zhang, P. (2017). A Virtual Geographic Environment for Debris Flow Risk Analysis in Residential Areas. ISPRS International Journal of Geo-Information, 6(11), 377. https://doi.org/10.3390/ijgi6110377