The Hypothesis Platform: An Online Tool for Experimental Research into Work with Maps and Behavior in Electronic Environments
Abstract
:1. Introduction
1.1. Application in the Field of Cognitive Cartography
1.2. Application in the Field of Psychodiagnostics
2. Hypothesis: Characteristics and Architecture
2.1. Hierarchical Structure of Packs
2.2. Computerized Adaptive Testing
2.3. Multi-Player/Task Tests
2.3.1. Multi-Task Mode (Synchronous Testing)
2.3.2. Multi-Player Mode (Asynchronous Testing)
2.4. Module Manager
2.4.1. Administrator Account
2.4.2. Slide Editor
2.4.3. Testing Modes and Pack Menu
2.4.4. Export Module
2.4.5. Selection Application
- List of raw data;
- List of pre-defined variables, whose values are to be selected;
- List of target values.
3. Slide Functionality
3.1. Questionnaires
3.2. Visual Stimuli
3.3. Slide Control
3.4. Control of User Actions
3.5. Dialog Window
3.6. Maps
3.7. Audio and Video
3.8. Image-Sequence Layer
3.9. Processing.js Component
4. Technical Design
Time Measurement Accuracy
5. Combination with Eye-Tracking
6. Comparison to Similar Tools
7. Test of Resources
8. An Experiment Illustrating the Usability of the Hypothesis Platform
8.1. Introduction
8.2. Methods
8.3. Results
8.4. Discussion
9. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mulíčková, E.; Šafr, G.; Staněk, K. Context map—A Tool for Cartography Support in Crisis Management. In Proceedings of the 3rd International Conference on Cartography and GIS, Nessebar, Bulgaria, 15–20 June 2010. [Google Scholar]
- Herman, L.; Popelka, S.; Hejlová, V. Eye-tracking Analysis of Interactive 3D Geovisualizations. J. Eye Mov. Res. 2017, 10, 1–15. [Google Scholar] [CrossRef]
- Špriňarová, K.; Juřík, V.; Šašinka, Č.; Herman, L.; Štěrba, Z.; Stachoň, Z.; Chmelík, J.; Kozlíková, B. Human-computer Interaction in Real 3D and Pseudo-3D Cartographic Visualization: A Comparative Study. In Cartography—Maps Connecting the World; Sluter, C.R., Cruz, C.B.M., de Menezes, P.M.L., Eds.; Springer International Publishing: Basel, Switzerland, 2015; pp. 59–73. [Google Scholar]
- Herbert, G.; Chen, X. A Comparison of Usefulness of 2D and 3D Representations of Urban Planning. Cartogr. Geogr. Inf. Sci. 2014, 42, 22–32. [Google Scholar] [CrossRef]
- Lammert-Siepmann, N.; Bestgen, A.-K.; Edler, D.; Kuchinke, L.; Dickmann, F. Audiovisual communication of object-names improves the spatial accuracy of recalled object-locations in topographic maps. PLoS ONE 2017, 12, e0186065. [Google Scholar] [CrossRef] [PubMed]
- Chmelařová, K.; Šašinka, Č.; Stachoň, Z. Visualization of Environment-related Information in Augmented Reality: Analysis of User Needs. In Advances in Cartography and GIScience; Peterson, M., Ed.; ICACI 2017, Lecture Notes in Geoinformation and Cartography; Springer: Washington, DC, USA, 2017; pp. 283–292. [Google Scholar]
- Robinson, A. Challenges and opportunities for web-based evaluation of the use of spatial technologies. In Proceedings of the ICA Conference, The Pennsylvania State University, University Park, PA, USA, 3–8 July 2011. [Google Scholar]
- Tullis, T.; Fleischman, S.; Mcnulty, M.; Cianchette, C.; Bergel, M. An empirical comparison of lab and remote usability testing of Web sites. In Proceedings of the Usability Professionnal Association Conference, Boston, MA, USA, 8–12 July 2002. [Google Scholar]
- Konečný, M.; Březinová, Š.; Drápela, M.V.; Friedmannová, L.; Herman, L.; Hübnerová, Z.; Kolář, M.; Kolejka, J.; Kozel, J.; Kubíček, P.; et al. Dynamická Geovizualizace V Krizovém Managementu, 1st ed.; Masarykova univerzita: Brno, Czech Republic, 2011. [Google Scholar]
- Evans, B.; Sabel, C.E. Open-Source web-based geographical information system for health exposure assessment. Int. J. Health Geogr. 2012, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Řezník, T.; Horáková, B.; Szturc, R. Geographic Information for Command and Control Systems Demonstration of Emergency Support System. In Intelligent Systems for Crisis Management: Geo-Information for Disaster Management (GI4DM) Lecture Notes in Geoinformation and Cartography; Zlatanova, S., Peters, R., Dilo, A., Scholten, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 263–275. [Google Scholar] [CrossRef]
- Kubíček, P.; Šašinka, Č.; Stachoň, Z.; Štěrba, Z.; Apeltauer, J.; Urbánek, T. Cartographic Design and Usability of Visual Variables for Linear Features. Cartogr. J. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Kubíček, P.; Šašinka, Č. Thematic Uncertainty Visualization Usability–Basic Methods Comparison. Ann. GIS 2011, 17, 253–263. [Google Scholar] [CrossRef]
- Štěrba, Z.; Šašinka, Č.; Stachoň, Z.; Kubíček, P.; Tamm, S. Mixed Research Design in Cartography: A Combination of Qualitative and Quantitative Approaches. Kartogr. Nachr. 2014, 64, 262–269. [Google Scholar]
- Kubíček, P.; Šašinka, Č.; Stachoň, Z. Vybrané kognitivní aspekty vizualizace polohové nejistoty v geografických datech. Geogra-Sb. České Geogra Spol. 2014, 119, 67–90. [Google Scholar]
- Konečný, M.; Kubíček, P.; Stachoň, Z.; Šašinka, Č. The usability of selected base maps for crises management: Users’ perspectives. Appl. Geomat. 2011, 3, 189–198. [Google Scholar] [CrossRef]
- Stachoň, Z.; Šašinka, Č.; Štěrba, Z.; Zbořil, J.; Březinová, Š.; Švancara, J. Influence of Graphic Design of Cartographic Symbols on Perception Structure. Kartogr. Nachr. 2013, 4, 216–220. [Google Scholar]
- Kitayama, S.; Duffy, S.; Kawamura, T.; Larsen, J.T. Perceiving an object and its context in different cultures: A cultural look at new look. Psychol. Sci. 2003, 14, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Witkin, H.A.; Oltman, P.K.; Raskin, E.; Karp, S. A Manual for the Embedded Figures Test; Consulting Psychologists Press: Palo Alto, CA, USA, 1971. [Google Scholar]
- Morong, K.; Šašinka, Č. Hypothesis—online software platform for objective experimental testing. In Applying Principles of Cognitive Psychology in Practice: Conference Proceedings; Bartošová, K., Čerňák, M., Kukaňová, M., Šašinka, Č., Eds.; Masaryk University: Brno, Czech Republic, 2015; Volume 5, pp. 15–16. [Google Scholar]
- Thorndyke, P.W.; Stasz, C. Individual differences in procedures for knowledge acquisition from maps. Cogn. Psychol. 1980, 12, 137–175. [Google Scholar] [CrossRef]
- Edler, D.; Bestgen, A.-K.; Kuchinke, L.; Dickmann, F. Grids in Topographic Maps Reduce Distortions in the Recall of Learned Object Locations. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed]
- Crampton, J.W. Interactivity types in geographic visualization. Cartogr. Geogr. Inf. Sci. 2002, 29, 85–98. [Google Scholar] [CrossRef]
- Roth, R.E. An empirically-derived taxonomy of interaction primitives for Interactive Cartography and Geovisualization. Trans. Vis. Comput. Graph. 2013, 19, 2356–2365. [Google Scholar] [CrossRef] [PubMed]
- Popelka, S.; Brychtová, A. Eye-tracking Study on Different Perception of 2D and 3D Terrain Visualization. Cartogr. J. 2013, 50, 240–246. [Google Scholar] [CrossRef]
- Brychtová, A.; Coltekin, A. An Empirical User Study for Measuring the Influence of Colour Distance and Font Size in Map Reading Using Eye Tracking. Cartogr. J. 2016, 53, 202–212. [Google Scholar] [CrossRef]
- Hofmann, A.; Hošková-Mayerová, Š.; Talhofer, V.; Kovařík, V. Creation of models for calculation of coefficients of terrain passability. Qual. Quant. 2015, 49, 1679–1691. [Google Scholar] [CrossRef]
- Devlin, A.S.; Bernstein, J. Interactive way-finding: map style and effectiveness. J. Environ. Psychol. 1997, 17, 99–110. [Google Scholar] [CrossRef]
- Vakalis, D.; Sarimveis, H.; Kiranoudis, C.T.; Alexandridis, A.; Bafas, G. A GIS based operational system for wildland fire crisis management II. System architecture and case studies. Appl. Math. Model. 2004, 28, 411–425. [Google Scholar] [CrossRef]
- Ilmavirta, A. The use of GIS-system in catastrophe and emergency management in Finnish municipalities. Comput. Environ. Urban Syst. 1995, 19, 171–178. [Google Scholar] [CrossRef]
- Konečný, M.; Friedmannová, L.; Stanek, K. An adaptive cartographic visualization for support of the crisis management. In CaGIS Publications—Autocarto 2006; CaGIS: Vancouver, WA, USA, 2006; pp. 100–105. [Google Scholar]
- Kubíček, P.; Kozel, J.; Štampach, R.; Lukas, V. Prototyping the visualization of geographic and sensor data for agriculture. Comput. Electron. Agric. 2013, 97, 83–91. [Google Scholar] [CrossRef]
- Roth, R.E.; Ross, K.S.; MacEachren, A.M. User-centered design for interactive maps: A case study in crime analysis. Int. J. Geo-Inf. 2015, 4, 262–301. [Google Scholar] [CrossRef]
- Baum, W.M. From molecular to molar: A paradigm shift in behavior analysis. J. Exp. Anal. Behav. 2002, 78, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Mead, A.D.; Drasgow, F. Equivalence of computerized and paper-and-pencil cognitive ability tests: A meta-analysis. Psychol. Bull. 1993, 114, 449–458. [Google Scholar] [CrossRef]
- Květon, P.; Jelínek, M.; Vobořil, D.; Klimusová, H. Computer-based tests: The impact of test design and problem of equivalency. Comput. Hum. Behav. 2007, 23, 32–51. [Google Scholar] [CrossRef]
- Ross, R.M. The D2 Test of Attention: An Examination of Age, Gender, and Cross-Cultural Indices; Argosy University: Chicago, IL, USA, 2005. [Google Scholar]
- Arnett, J.A.; Labovitz, S.S. Effect of physical layout in performance of the Trail Making Test. Psychol. Assess. 1995, 7, 220–221. [Google Scholar] [CrossRef]
- Baddeley, A.D. A 3 min reasoning test based on grammatical transformation. Psychon. Sci. 1968, 10, 341–342. [Google Scholar] [CrossRef]
- Kozhevnikov, M.; Hegarty, M. A dissociation between object-manipulation and perspective-taking spatial abilities. Mem. Cognit. 2001, 29, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, M.; Waller, D. A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence 2004, 32, 175–191. [Google Scholar] [CrossRef]
- Štěrba, Z.; Šašinka, Č.; Stachoň, Z.; Štampach, R.; Morong, K. Selected Issues of Experimental Testing in Cartography; Masaryk University: Brno, Czech Republic, 2015. [Google Scholar]
- Žitný, P.; Halama, P.; Jelínek, M.; Květon, P. Validity of cognitive ability tests–comparison of computerized adaptive testing with paper and pencil and computer-based forms of administrations. Stud. Psychol. 2012, 54, 181–194. [Google Scholar]
- Gershon, R.C. Computer Adaptive Testing. J. Appl. Meas. 2005, 6, 109–127. [Google Scholar] [PubMed]
- Karner, T.; Neuwirth, W. Die Bedeutung der peripheren Wahrnehmung in der verkehrspsychologischen Untersuchung. Psychol. Österreich 2001, 21, 183–186. [Google Scholar]
- Schuhfried, G. PP-R Periphere Wahrnehmung—R. Available online: https://www.schuhfried.at/test/PP-R (accessed on 20 October 2016).
- Krek, A.; Bortenschlager, M. Geo-collaboration and P2P Geographic Information Systems. Current Developments and Research Challenges. Collaborative Peer to Peer Information Systems (COPS06) Workshop-WETICE. Manchester, UK, 2006. Available online: http://www.sel.uniroma2.it/cops06/papers/COPS06-Krek.pdf (accessed on 20 October 2016).
- MacEachren, A.M.; Cai, G.; Sharma, R.; Rauschert, I.; Brewer, I.; Bolelli, L.; Shaparenko, B.; Fuhrmann, S.; Wang, H. Enabling collaborative geoinformation access and decision-making through a natural, multimodal interface. Int. J. Geogr. Inf. Sci. 2005, 19, 293–317. [Google Scholar] [CrossRef]
- Asch, S.E. Effects of Group Pressure on the Modification and Distortion of Judgments. In Groups, Leadership and Men; Guetzkow, H., Ed.; Carnegie Press: Pittsburgh, PA, USA, 1951; pp. 177–190. [Google Scholar]
- Ciampaglia, G.L.; Lozano, S.; Helbing, D. Power and Fairness in a Generalized Ultimatum Game. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed]
- Cornu, C.H. SWT Browser: Viewing HTML Pages with SWT Browser Widget. 26 August 2004. Available online: https://eclipse.org/articles/Article-SWT-browser-widget/browser.html (accessed on 25 October 2016).
- Godnig, E.C. The Tachistoscope: Its History and Uses. J. Behav. Opt. 2003, 14, 39–42. [Google Scholar]
- Shiffman, D. Learning Processing: A Beginner’s Guide to Programming Images, Animation, and Interaction, 1st ed.; Morgan Kaufmann: Burlington, MA, USA, 2008. [Google Scholar]
- Reas, C.; Fry, B. Getting Started with Processing, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2010. [Google Scholar]
- A Port of the Processing Visualization Language. Available online: http://processingjs.org/ (accessed on 25 October 2016).
- Vaadin Ltd. 2016. Available online: https://vaadin.com/home (accessed on 25 October 2016).
- Voßkühler, A.; Nordmeier, V.; Kuchinke, L.; Jacobs, A.M. OGAMA–OpenGazeAndMouseAnalyzer: Open source software designed to analyze eye and mouse movements in slideshow study designs. Behav. Res. Method. 2008, 40, 1150–1162. [Google Scholar] [CrossRef] [PubMed]
- Voßkühler, A. OGAMA Description (for Version 2.5). A Software to Record, Analyze and Visualize Gaze and Mouse Movements in Screen Based environments. 2009. Available online: http://www.ogama.net/sites/default/files/pdf/OGAMA-DescriptionV25.pdf (accessed on 30 October 2016).
- Voßkühler, A. OGAMA (OpenGazeAndMouseAnalyzer): An Open Source Software Designed to Analyze Eye and Mouse Movements in Slideshow Study Designs. 16 May 2015. Available online: www.ogama.net (accessed on 30 October 2016).
- Popelka, S.; Stachoň, Z.; Šašinka, Č.; Doležalová, J. Eyetribe Tracker Data Accuracy Evaluation and Its Interconnection with Hypothesis Software for Cartographic Purposes. Comput. Intell. Neurosci. 2016, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Doležalová, J.; Popelka, S. ScanGraph: A novel scanpath comparison method using graph cliques visualization. J. Eye Mov. Res. 2016, 9, 1–13. [Google Scholar] [CrossRef]
- Neuro behavioral systems, Inc. Available online: www.neurobs.com (accessed on 24 February 2017).
- Cornelissen, F.W.; Peters, E.M.; Palmer, J. The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behav. Res. Method. Instrum. Comput. 2002, 34, 613–671. [Google Scholar] [CrossRef]
- Psychtoolbox-3. Available online: http://psychtoolbox.org (accessed on 24 February 2017).
- Psychology Software Tools, Inc. Available online: www.pstnet.com (accessed on 24 February 2017).
- Paradigm. Available online: http://www.paradigmexperiments.com (accessed on 24 February 2017).
- Mathôt, S.; Schreij, D.; Theeuwes, J. OpenSesame: An open-source, graphical experiment builder for the social sciences. Behav. Res. Method. 2012, 44, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Pliatsikas, C.; Johnstone, T.; Marinis, T. FMRI evidence for the involvement of the procedural memory system in morphological processing of a second language. PLoS ONE 2014, 9, e97298. [Google Scholar] [CrossRef] [PubMed]
- SR Research: Fast, Accurate, Reliable Eye Tracking. Available online: http://www.sr-research.com (accessed on 24 February 2017).
- SMI SensoMotoric Instruments. Available online: www.smivision.com (accessed on 24 February 2017).
- PEBL. The Psychology Experiment Building Language. Available online: http://pebl.sourceforge.net (accessed on 24 February 2017).
- Von Bastian, C.C.; Locher, A.; Ruflin, M. Tatool: A Java-Based Open-Source Programming Framework for Psychological Studies. Behav. Res. Methods 2013, 45, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Garaizar, P.; Reips, U.D. Build your own social network laboratory with Social Lab: A tool for research in social media. Behav. Res. Methods 2014, 46, 430–438. [Google Scholar] [CrossRef] [PubMed]
- De Leeuw, J.R. Jspsych: A JavaScript library for creating behavioral experiments in a web browser. Behav. Res. Methods 2015, 47, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Virrantaus, K.; Fairbairn, D.; Kraak, M. ICA research agenda on cartography and GIScience. Cartogr. Geogr. Inf. Sci. 2009, 36, 209–222. [Google Scholar] [CrossRef]
- Nivala, A.-M.; Sarjakoski, L.T.; Sarjakoski, T. Usability methods’ familiarity among map application developers. Int. J. Hum.-Comput. Stud. 2007, 65, 784–795. [Google Scholar] [CrossRef]
- Ooms, K.; Coltekin, A.; De Maeyer, P.; Dupont, L.; Fabrikant, S.; Incoul, A.; Kuhn, M.; Slabbick, H.; Vansteenkiste, P.; Van der Haegen, L. Combining user logging with eye tracking for interactive and dynamic applications. Behav. Res. Methods 2015, 47, 977–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demšar, U. Investigating visual exploration of geospatial data: An exploratory usability experiment for visual data mining. Comput. Environ. Urban Syst. 2007, 31, 551–571. [Google Scholar] [CrossRef]
- Svatoňová, H.; Kolejka, J. Comparative Research of Visual Interpretation of Aerial Images and Topographic Maps for Unskilled Users: Searching for Objects Important for Decision-Making in Crisis Situations. ISPRS Int. J. Geo-Inf. 2017, 6, 231. [Google Scholar] [CrossRef]
- Helisková, M. Možnosti A Limity Online Počítačové Diagnostiky. The Capabilities and the liMits of Online PC Diagnostics. Master’s Thesis, Masaryk University, Brno, Czech Republic, December 2016. [Google Scholar]
- Knedlová, P. Kognitivní styl a jeho vliv na čtení mapy. The Influence of Cognitive Style on Map Reading. Master’s Thesis, Masaryk University, Brno, Czech Republic, 2016. [Google Scholar]
- Kubíček, P.; Šašinka, Č.; Stachoň, Z.; Herman, L.; Juřík, V.; Urbánek, T.; Chmelík, J. Identification of altitude profiles in 3D geovisualizations: The role of interaction and spatial abilities. Int. J. Digit. Earth 2017, 1–17. [Google Scholar] [CrossRef]
- Opach, T.; Popelka, S.; Doležalová, J.; Rod, J.K. Star and Polyline Glyphs in a Grid Plot and on a Map Display: Which Perform Better? Cartogr. Geogr. Inf. Sci. 2017. [Google Scholar] [CrossRef]
- Kukaňová, M. Porovnání dvou typů vizualizací z hlediska percepční a kognitivní zátěže a kognitivních schopností jedince. Comparison of the two Types of Visualization in Terms of Perceptual and Cognitive Load, and Personal Cognitive Abilities. Ph.D. Thesis, Masaryk University, Brno, Czech Republic, September 2017. [Google Scholar]
- Herman, L.; Řezník, T. 3D Web Visualization of Environmental Information–Integration of Heterogeneous Data Sources when Providing Navigation and Interaction. In ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Mallet, C., Paparoditis, N., Dowman, I., Elberink, S.O., Raimond, A.-M., Sithole, G., Rabatel, G., Rottensteiner, F., Briottet, X., Eds.; Copernicus GmbH: Gottingen, Germany, 2015; Volume XL-3/W3, pp. 479–485. [Google Scholar] [CrossRef]
- Herman, L.; Stachoň, Z. Comparison of User Performance with Interactive and Static 3D Visualization–Pilot Study. In ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Halounová, L., Li, S., Šafář, V., Tomková, M., Rapant, P., Brázdil, K., Shi, W., Anton, F., Liu, Y., Stein, A., et al., Eds.; Copernicus GmbH: Gottingen, Germany, 2016; Volume XLI-B2, pp. 655–661. [Google Scholar] [CrossRef]
- Herman, L.; Stachoň, Z.; Stuchlík, R.; Hladík, J.; Kubíček, P. Touch Interaction with 3D Geographical Visualization on Web: Selected Technological and User Issues. In ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Dimopoulou, E., van Oosterom, P., Eds.; Copernicus GmbH: Gottingen, Germany, 2016; Volume XLII-2/W2, pp. 33–40. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šašinka, Č.; Morong, K.; Stachoň, Z. The Hypothesis Platform: An Online Tool for Experimental Research into Work with Maps and Behavior in Electronic Environments. ISPRS Int. J. Geo-Inf. 2017, 6, 407. https://doi.org/10.3390/ijgi6120407
Šašinka Č, Morong K, Stachoň Z. The Hypothesis Platform: An Online Tool for Experimental Research into Work with Maps and Behavior in Electronic Environments. ISPRS International Journal of Geo-Information. 2017; 6(12):407. https://doi.org/10.3390/ijgi6120407
Chicago/Turabian StyleŠašinka, Čeněk, Kamil Morong, and Zdeněk Stachoň. 2017. "The Hypothesis Platform: An Online Tool for Experimental Research into Work with Maps and Behavior in Electronic Environments" ISPRS International Journal of Geo-Information 6, no. 12: 407. https://doi.org/10.3390/ijgi6120407
APA StyleŠašinka, Č., Morong, K., & Stachoň, Z. (2017). The Hypothesis Platform: An Online Tool for Experimental Research into Work with Maps and Behavior in Electronic Environments. ISPRS International Journal of Geo-Information, 6(12), 407. https://doi.org/10.3390/ijgi6120407