Automatic Detection of Potential Dam Locations in Digital Terrain Models
Abstract
:1. Introduction
Related Work
2. Methods
2.1. Idea and Basic Concept
2.2. Dam Length Optimization
2.3. Practical Workflow
3. Study Area and Processing
3.1. Study Area
3.2. Data Processing
4. Discussion
5. Conclusions and Outlook
- The assumption of only one dam per polygon is a certain limitation since this excludes valley constellations with an existing natural barrier in the middle as well as retention areas limited by two or more saddle points/valley constrictions. To cover all these cases, separate contour lines with the same height have to be combined to one entity which poses additional challenges to the validation of intermediate results (e.g., is a potential lake really closed to all sides?).
- Adding information about slope direction to the contour lines could significantly save processing time. For all the lines where the slope direction is the same along their entire course, parallel shift and self-intersection would only have to be done once instead of twice.
- Other factors concerning the constructional, economic and legal viability can currently only be hard constraints, i.e., a certain area is valid or masked out. For a better overall optimization, an introduction of soft constraints as quality criteria from the very beginning would be desirable.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Giesecke, J.; Mosonyi, E. Wasserkraftanlagen—Bau, Planung und Betrieb; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Kummu, M.; Ward, P.J.; de Moel, H.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5, 3. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Scholz, M.; Yang, Q. Guidance on variables characterizing water bodies including sustainable flood retention basins. Landsc. Urban Plan. 2010, 98, 190–199. [Google Scholar] [CrossRef]
- Rieger, W. Prozessorientierte Modellierung Dezentraler Hochwasserschutzmaßnahmen. Ph.D. Thesis, Bundeswehr University Munich, Neubiberg, Germany, 2012. [Google Scholar]
- Nijssen, D.; Schumann, A.; Pahlow, M.; Klein, B. Planning of technical flood retention measures in large river basins under consideration of imprecise probabilities of multivariate hydrological loads. Nat. Hazards Earth Syst. Sci. 2009, 9, 1349–1363. [Google Scholar] [CrossRef]
- Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef]
- Rasmussen, J.; Sonnenborg, T.O.; Stisen, S.; Seaby, L.P.; Christensen, B.S.B.; Hinsby, K. Climate change effects on irrigation demands and minimum stream discharge: Impact of bias-correction method. Hydrol. Earth Syst. Sci. 2012, 16, 4675–4691. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.-M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water scarcity. J. Environ. Manag. 2009, 90, 3185–3196. [Google Scholar] [CrossRef]
- Cheng, H.; Hu, Y.; Zhao, J. Meeting China’s Water Shortage Crisis: Current Practices and Challenges. Environ. Sci. Technol. 2009, 43, 240–244. [Google Scholar] [CrossRef]
- Ravindranath, A.; Devineni, N.; Lall, U.; Larrauri, P.C. Season-Ahead Forecasting of Water Storage and Irrigation Requirements—An Application to the Southwest Monsoon in India. Hydrol. Earth Syst. Sci. Discuss. 2018, 22, 5125–5141. [Google Scholar] [CrossRef]
- Jager, H.I.; Efroymson, R.A.; Opperman, J.J.; Kelly, M.R. Spatial design principles for sustainable hydropower development in river basins. Renew. Sustain. Energy Rev. 2015, 45, 808–816. [Google Scholar] [CrossRef]
- Lipscomb, M.; Mobarak, A.M.; Barham, T. Development Effects of Electrification: Evidence from the Topographic Placement of Hydropower Plants in Brazil. Am. Econ. J. Appl. Econ. 2013, 5, 200–231. [Google Scholar] [CrossRef]
- Möderl, M.; Sitzenfrei, R.; Mair, M.; Jarosch, H. Identifying Hydropower Potential in Water Distribution Systems of Alpine Regions. In Proceedings of the World Environmental and Water Resources Congress, Alquerque, NM, USA, 20–24 May 2012; 2012; pp. 3137–3146. [Google Scholar]
- Fecarotta, O.; Arico, C.; Carravetta, A.; Martino, R.; Ramos, H.M. Hydropower Potential in Water Distribution Networks: Pressure Control by PATs. Water Resour. Manag. 2015, 29, 699–714. [Google Scholar] [CrossRef]
- Sternberg, R. Hydropower: Dimensions of social and environmental coexistence. Renew. Sustain. Energy Rev. 2008, 12, 1588–1621. [Google Scholar] [CrossRef]
- Duflo, E.; Pande, R. Dams. Q. J. Econ. 2007, 122, 601–646. [Google Scholar] [CrossRef]
- Anderson, E.P.; Pringle, C.M.; Rojas, M. Transforming tropical rivers: An environmental perspective on hydropower development in Costa Rica. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 679–693. [Google Scholar] [CrossRef]
- Wu, X.; Gomes-Selman, J.; Shi, Q.; Xue, Y.; Garcia-Villacorta, R.; Anderson, E.; Sethi, S.; Steinschneider, S.; Flecker, A.; Gomes, C.P. Efficiently Approximating the Pareto Frontier: Hydropower Dam Placement in the Amazon Basin. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), New Orleans, LA, USA, 2–7 February 2018; pp. 849–858. [Google Scholar]
- Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A framework for Airborne Laser Scanning data analysis. Comput. Urban Syst. 2014, 45, 125–136. [Google Scholar] [CrossRef]
- OPALS Developer Team. OPALS—Orientation and Processing of Airborne Laser Scanning Data, TU Wien. 2018. Available online: https://opals.geo.tuwien.ac.at/html/stable/index.html (accessed on 24 April 2019).
- GDAL Developer Team. GDAL—Geospatial Data Abstraction Library, Open Source Geospatial Foundation. 2018. Available online: http://www.gdal.org (accessed on 24 April 2019).
- Hovenbitzer, M. The European DEM (EuroDEM)—Setup and harmonization, The International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2008, 37, 1853–1856. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Ackermann, F.; Kraus, K. Reader Commentary: Grid Based Digital Terrain Models. Geoinformatics 2004, 7, 28–31. [Google Scholar]
- Mandlburger, G.; Hauer, C.; Höfle, B.; Habersack, H.; Pfeifer, N. Optimisation of LiDAR derived terrain models for river flow modelling. Hydrol. Earth Sci. 2009, 13, 1453–1466. [Google Scholar] [CrossRef]
- Pfeifer, N. A subdivision algorithm for smooth 3D terrain models. ISPRS J. Photogramm. Sens. 2005, 59, 115–127. [Google Scholar] [CrossRef]
- Biszak, E.; Biszak, S.; Timár, G.; Nagy, D.; Molnár, G. Historical topographic and cadastral maps of Europe in spotlight—Evolution of the MAPIRE map portal. In Proceedings of the 12th ICA Conference Digital Approaches to Cartographic Heritage, Venice, Italy, 26–28 April 2017; pp. 204–208. [Google Scholar]
Parameter Description | Variable | Value |
---|---|---|
Equidistance between two contour lines | ed | 1 m |
Dam lengths (decreasing) | damL | [100, 90,…, 20, 10, 5] m |
Minimal arc length | minArc | 200 m |
Number of polygons kept within a group (c.f., Figure 3) | n | 3 |
Simplified quality measure to compare group polygons | Q1 | c.f., Equation (1) |
Resolution | Number of Poly. | Ø Dam Length [m] | Ø Area [m2] | Ø Volume [m3] | Σ Volume [m3] | Median (Q2) [m2] |
---|---|---|---|---|---|---|
1 m/5 m all | 1979 | 60.8 | 9667 | 23,479 | - | 42.3 |
1 m/5 m best | 264 | 62.7 | 14,445 | 23,328 | 6.2 Mio. | 50.4 |
40 m/40 m all | 1968 | 81.5 | 12,126 | 22,516 | - | 40.5 |
40 m/40 m best | 284 | 82.0 | 15,756 | 25,243 | 7.2 Mio. | 47.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wimmer, M.H.; Pfeifer, N.; Hollaus, M. Automatic Detection of Potential Dam Locations in Digital Terrain Models. ISPRS Int. J. Geo-Inf. 2019, 8, 197. https://doi.org/10.3390/ijgi8040197
Wimmer MH, Pfeifer N, Hollaus M. Automatic Detection of Potential Dam Locations in Digital Terrain Models. ISPRS International Journal of Geo-Information. 2019; 8(4):197. https://doi.org/10.3390/ijgi8040197
Chicago/Turabian StyleWimmer, Michael H., Norbert Pfeifer, and Markus Hollaus. 2019. "Automatic Detection of Potential Dam Locations in Digital Terrain Models" ISPRS International Journal of Geo-Information 8, no. 4: 197. https://doi.org/10.3390/ijgi8040197
APA StyleWimmer, M. H., Pfeifer, N., & Hollaus, M. (2019). Automatic Detection of Potential Dam Locations in Digital Terrain Models. ISPRS International Journal of Geo-Information, 8(4), 197. https://doi.org/10.3390/ijgi8040197