Geovisualization of the Excavation Process in the Lesvos Petrified Forest, Greece Using Augmented Reality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Data Acquisition
3.1. UAS Data Collection
3.2. Real-Time Kinematic Data Collection
4. Data Processing
4.1. Image-Based 3D Modeling
4.2. Cartographic Process
5. 3D Geovisualization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goralski, R.; Gold, C. Marine GIS: Progress in 3D Visualization for Dynamic GIS. In Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2008; pp. 401–416. ISBN 9783540685654. [Google Scholar]
- Santos, I.; Henriques, R.; Mariano, G.; Pereira, D.I. Methodologies to Represent and Promote the Geoheritage Using Unmanned Aerial Vehicles, Multimedia Technologies, and Augmented Reality. Geoheritage 2018, 10, 143–155. [Google Scholar] [CrossRef]
- Cayla, N.; Hobléa, F.; Reynard, E. New Digital Technologies Applied to the Management of Geoheritage. Geoheritage 2014, 6, 89–90. [Google Scholar] [CrossRef] [Green Version]
- Lerma, J.L.; García, A. 3D City Modelling and Visualization of Historical Centers. In Proceedings of the CIPA Internacional Workshop of Vision Techniques applied to the Rehabilitation of City Centres, Lisbon, Portugal, 25–27 Octuber 2004. [Google Scholar]
- Niedzielski, T. Applications of Unmanned Aerial Vehicles in Geosciences: Introduction. Pure Appl. Geophys. 2018, 175, 3141–3144. [Google Scholar] [CrossRef]
- Hatch, M. Environmental Geophysics. Preview 2017, 2017, 32–33. [Google Scholar] [CrossRef]
- Clapuyt, F.; Vanacker, V.; Van Oost, K. Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms. Geomorphology 2016, 260, 4–15. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- De Reu, J. Image-Based 3D Modeling. In The Encyclopedia of Archaeological Sciences; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Dellepiane, M.; Dell’Unto, N.; Callieri, M.; Lindgren, S.; Scopigno, R. Archeological excavation monitoring using dense stereo matching techniques. J. Cult. Herit. 2013, 14, 201–210. [Google Scholar] [CrossRef]
- Peng, F.; Lin, S.C.; Guo, J.; Wang, H.; Gao, X. The Application of SfM Photogrammetry Software for Extracting Artifact Provenience from Palaeolithic Excavation Surfaces. J. Field Archaeol. 2017, 42, 326–336. [Google Scholar] [CrossRef]
- Kasprzak, M.; Jancewicz, K.; Michniewicz, A. UAV and SfM in Detailed Geomorphological Mapping of Granite Tors: An Example of Starościńskie Skały (Sudetes, SW Poland). Pure Appl. Geophys. 2018, 175, 3193–3207. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Hong, S. Three-Dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. ISPRS Int. J. Geo-Inf. 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Azuma, R.T. A Survey of Augmented Reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Kim, W.; Kerle, N.; Gerke, M. Mobile augmented reality in support of building damage and safety assessment. Nat. Hazards Earth Syst. Sci. 2016, 16, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Kamat, V.R.; El-Tawil, S. Evaluation of Augmented Reality for Rapid Assessment of Earthquake-Induced Building Damage. J. Comput. Civ. Eng. 2007, 21, 303–310. [Google Scholar] [CrossRef]
- Siekański, P.; Michoński, J.; Bunsch, E.; Sitnik, R. CATCHA: Real-Time Camera Tracking Method for Augmented Reality Applications in Cultural Heritage Interiors. ISPRS Int. J. Geo-Inf. 2018, 7, 479. [Google Scholar] [CrossRef] [Green Version]
- Panou, C.; Ragia, L.; Dimelli, D.; Mania, K. An Architecture for Mobile Outdoors Augmented Reality for Cultural Heritage. ISPRS Int. J. Geo-Inf. 2018, 7, 463. [Google Scholar] [CrossRef] [Green Version]
- Bertok, C.; Lozar, F.; Magagna, A.; Giordano, E.; D’Atri, A.; Dela Pierre, F.; Natalicchio, M.; Martire, L.; Clari, P.; Violanti, D.; et al. Virtual Tours Through Earth’s History and Palaeoclimate: Examples from the Piemonte (Northwestern Italy) Geoheritage (PROGEO-Piemonte Project). In Springer Geology; Springer: Cham, Switzerland, 2014; pp. 299–302. [Google Scholar]
- Rapprich, V.; Lisec, M.; Fiferna, P.; Závada, P. Application of Modern Technologies in Popularization of the Czech Volcanic Geoheritage. Geoheritage 2017, 9, 413–420. [Google Scholar] [CrossRef]
- Martínez-Graña, A.; González-Delgado, J.Á.; Ramos, C.; Gonzalo, J.C. Augmented Reality and Valorizing the Mesozoic Geological Heritage (Burgos, Spain). Sustainability 2018, 10, 4616. [Google Scholar] [CrossRef] [Green Version]
- Zollmann, S.; Hoppe, C.; Kluckner, S.; Poglitsch, C.; Bischof, H.; Reitmayr, G. Augmented Reality for Construction Site Monitoring and Documentation. Proc. IEEE 2014, 102, 137–154. [Google Scholar] [CrossRef]
- Koo, S.; Kim, J.; Kim, C.; Kim, J.; Cha, H.S. Development of an Augmented Reality Tour Guide for a Cultural Heritage Site. J. Comput. Cult. Herit. 2020, 12, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Koufos, G.D.; Zouros, N.; Mourouzidou, O. Prodeinotherium bavaricum (Proboscidea, Mammalia) from Lesvos island, Greece; the appearance of deinotheres in the eastern Mediterranean. Geobios 2003, 36, 305–315. [Google Scholar] [CrossRef]
- Vasileiadou, K.; Böhme, M.; Neubauer, T.A.; Georgalis, G.L.; Syrides, G.E.; Papadopoulou, L.; Zouros, N. Early Miocene gastropod and ectothermic vertebrate remains from the Lesvos Petrified Forest (Greece). PalZ 2017, 91, 541–564. [Google Scholar] [CrossRef] [Green Version]
- Zouros, N.C. The Petrified Forest of Lesvos A Unique Natural Monument. In Natural Heritage from East to West; Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–26. ISBN 9783642015762. [Google Scholar]
- Soulakellis, N.; Tataris, G.; Papadopoulou, E.-E.; Chatzistamatis, S.; Vasilakos, C.; Kavroudakis, D.; Roussou, O.; Papakonstantinou, A. Synergistic Exploitation of Geoinformation Methods for Post-earthquake 3D Mapping and Damage Assessment. In Lecture Notes in Geoinformation and Cartography; Springer: Cham, Switzerland, 2019; pp. 3–31. ISBN 9783030053291. [Google Scholar]
- Agisoft LLC Agisoft PhotoScan User Manual: Professional Edition, Version 1.2. Available online: https://www.agisoft.com/pdf/photoscan-pro_1_2_en.pdf (accessed on 14 May 2020).
Date | 01 August 2018 | 07 October 2018 | 11 November 2018 | ||
---|---|---|---|---|---|
Study Area | Excavation Area | Excavation Area | Trench Level (Site) | Excavation Area | Trench Level (Site) |
Height of flight | 50 m | 50 m | 20 m | 50 m | 20 m |
Time of flight | 11:30 a.m. | 11:45 p.m. | 12:30 p.m. | 12:00 p.m. | 12:45 p.m. |
Duration | 19 m | 19 m | 11 m | 19 m | 11 m |
Total Distance | 4800 m | 4800 m | 1300 m | 4800 m | 1300 m |
Ground Sampling Distance (GSD) | 0.06 m | 0.06 m | 0.02 m | 0.06 m | 0.02 m |
Speed | 15 km/h | ||||
Gimbal Pitch | Vertical | ||||
Heading | To the next way point | ||||
Sensor specs | Resolution: 24.3 MP, width: 6.3 mm, height 4.7 mm, focal length 19 mm 1.55 μm sensor pixel size |
Date | 01 August 2018 | 07 October 2018 | 11 November 2018 | |||
---|---|---|---|---|---|---|
Scale | 1:500 | 1:50 | 1:500 | 1:50 | 1:500 | 1:50 |
RMSE of control points (cm) | 6.1 | 6.1 | 6.4 | 2.4 | 5.0 | 4.9 |
RMSE of check points (cm) | 3.9 | 3.9 | 4.6 | 3.9 | 3.0 | 1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulou, E.-E.; Kasapakis, V.; Vasilakos, C.; Papakonstantinou, A.; Zouros, N.; Chroni, A.; Soulakellis, N. Geovisualization of the Excavation Process in the Lesvos Petrified Forest, Greece Using Augmented Reality. ISPRS Int. J. Geo-Inf. 2020, 9, 374. https://doi.org/10.3390/ijgi9060374
Papadopoulou E-E, Kasapakis V, Vasilakos C, Papakonstantinou A, Zouros N, Chroni A, Soulakellis N. Geovisualization of the Excavation Process in the Lesvos Petrified Forest, Greece Using Augmented Reality. ISPRS International Journal of Geo-Information. 2020; 9(6):374. https://doi.org/10.3390/ijgi9060374
Chicago/Turabian StylePapadopoulou, Ermioni-Eirini, Vlasios Kasapakis, Christos Vasilakos, Apostolos Papakonstantinou, Nikolaos Zouros, Athanasia Chroni, and Nikolaos Soulakellis. 2020. "Geovisualization of the Excavation Process in the Lesvos Petrified Forest, Greece Using Augmented Reality" ISPRS International Journal of Geo-Information 9, no. 6: 374. https://doi.org/10.3390/ijgi9060374