Untargeted Urinary Volatilomics Reveals Hexadecanal as a Potential Biomarker for Preeclampsia
Abstract
:1. Introduction
2. Results
2.1. Baseline Clinical Characteristics of Enrolled Participants
2.2. Identified Volatile Metabolites in the Analyzed Urine Samples
2.3. Univariate Statistical Analysis
2.4. Biomarker Analysis
2.5. Enrichment Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. GS-MS Analysis
4.3. Data Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimitriadis, E.; Rolnik, D.L.; Zhou, W.; Estrada-Gutierrez, G.; Koga, K.; Francisco, R.P.V.; Whitehead, C.; Hyett, J.; Costa, F.d.S.; Nicolaides, K.; et al. Pre-eclampsia. Nat. Rev. Dis. Prim. 2023, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Afrose, D.; Chen, H.; Ranashinghe, A.; Liu, C.C.; Henessy, A.; Hansbro, P.M.; McClements, L. The diagnostic potential of oxidative stress biomarkers for preeclampsia: Systematic review and meta-analysis. Biol. Sex Differ. 2022, 13, 26. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.D.; McCarthy, C.; McCarthy, F.P.; Kenny, L.C. Oxidative stress in pre-eclampsia; have we been looking in the wrong place? Pregnancy Hypertens. 2017, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Velegrakis, A.; Kouvidi, E.; Fragkiadaki, P.; Sifakis, S. Predictive value of the sFlt-1/PlGF ratio in women with suspected preeclampsia: An update (Review). Int. J. Mol. Med. 2023, 52, 89. [Google Scholar] [CrossRef]
- Raijmakers, M.T.M.; Dechend, R.; Poston, L. Poston, Oxidative stress and preeclampsia: Rationale for antioxidant clinical trials. Hypertension 2004, 44, 374–380. [Google Scholar] [CrossRef]
- Gh, B.F.N.M. Application of metabolomics to preeclampsia diagnosis. Syst. Biol. Reprod. Med. 2018, 64, 324–339. [Google Scholar] [CrossRef]
- Pathmasiri, W.; Rushing, B.R.; McRitchie, S.; Choudhari, M.; Du, X.; Smirnov, A.; Pelleigrini, M.; Thompson, M.J.; Sakaguchi, C.A.; Nieman, D.C.; et al. Untargeted metabolomics reveal signatures of a healthy lifestyle. Sci. Rep. 2024, 14, 13630. [Google Scholar] [CrossRef]
- Agarwal, N.R.; Kachhawa, G.; Oyeyemi, B.F.; Bhavesh, N.S. Metabolic profiling of serum and urine in preeclampsia and gestational diabetes in early pregnancy. Med. Drug Discov. 2022, 16, 100143. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Djukovic, D. Overview of mass spectrometry-based metabolomics: Opportunities and challenges. Methods Mol. Biol. 2014, 1198, 3–12. [Google Scholar] [CrossRef]
- Nakahara, K.; Ohkuni, A.; Kitamura, T.; Abe, K.; Naganuma, T.; Ohno, Y.; Zoeller, R.A.; Kihara, A. The Sjögren-Larsson Syndrome Gene Encodes a Hexadecenal Dehydrogenase of the Sphingosine 1-Phosphate Degradation Pathway. Mol. Cell 2012, 46, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Fritz, K.S.; Petersen, D.R. An overview of the chemistry and biology of reactive aldehydes. Free Radic. Biol. Med. 2013, 59, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Lubes, G.; Goodarzi, M. GC–MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J. Pharm. Biomed. Anal. 2018, 147, 313–322. [Google Scholar] [CrossRef]
- Bojko, B.; Reyes-Garcés, N.; Bessonneau, V.; Goryński, K.; Mousavi, F.; Silva, E.A.S.; Pawliszyn, J. Solid-phase microextraction in metabolomics. TrAC Trends Anal. Chem. 2014, 61, 168–180. [Google Scholar] [CrossRef]
- Aggarwal, P.; Baker, J.; Boyd, M.T.; Coyle, S.; Probert, C.; Chapman, E.A. Optimisation of urine sample preparation for headspace-solid phase microextraction gas chromatography-mass spectrometry: Altering sample ph, sulphuric acid concentration and phase ratio. Metabolites 2020, 10, 482. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E. Recent developments and applications of solid phase microextraction as a sample preparation approach for mass-spectrometry-based metabolomics and lipidomics. TrAC Trends Anal. Chem. 2019, 113, 172–181. [Google Scholar] [CrossRef]
- Sana, S.-R.; Chen, G.-M.; Lv, Y.; Guo, L.; Li, E.-Y. Metabonomics fingerprint of volatile organic compounds in serum and urine of pregnant women with gestational diabetes mellitus. World J. Diabetes 2022, 13, 888–899. [Google Scholar] [CrossRef]
- Charkiewicz, K.; Goscik, J.; Blachnio-Zabielska, A.; Raba, G.; Sakowicz, A.; Kalinka, J.; Chabowski, A.; Laudanski, P. Sphingolipids as a new factor in the pathomechanism of preeclampsia—Mass spectrometry analysis. PLoS ONE 2017, 12, e0177601. [Google Scholar] [CrossRef]
- Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef]
- OJovanovic, O.; Pashkovskaya, A.A.; Annibal, A.; Vazdar, M.; Burchardt, N.; Sansone, A.; Gille, L.; Fedorova, M.; Ferreri, C.; Pohl, E.E. The molecular mechanism behind reactive aldehyde action on transmembrane translocations of proton and potassium ions. Free. Radic. Biol. Med. 2015, 89, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Epizzimenti, S.; Ciamporcero, E.S.; Edaga, M.; Epettazzoni, P.; Earcaro, A.; Ecetrangolo, G.; Eminelli, R.; Edianzani, C.; Elepore, A.; Egentile, F.; et al. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front. Physiol. 2013, 4, 242. [Google Scholar] [CrossRef]
- Kitamura, T.; Naganuma, T.; Abe, K.; Nakahara, K.; Ohno, Y.; Kihara, A. Substrate specificity, plasma membrane localization, and lipid modification of the aldehyde dehydrogenase ALDH3B1. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2013, 1831, 1395–1401. [Google Scholar] [CrossRef] [PubMed]
- Mallela, S.K.; Merscher, S.; Fornoni, A. Implications of Sphingolipid Metabolites in Kidney Diseases. Int. J. Mol. Sci. 2022, 23, 4244. [Google Scholar] [CrossRef]
- Yokota, R.; Bhunu, B.; Toba, H.; Intapad, S. Sphingolipids and Kidney Disease: Possible Role of Preeclampsia and Intrauterine Growth Restriction (IUGR). Kidney360 2021, 2, 534–541. [Google Scholar] [CrossRef]
- Roberts, J.M.; Gammill, H.S. Preeclampsia: Recent insights. Hypertension 2005, 46, 1243–1249. [Google Scholar] [CrossRef]
- Miller, C.G.; Schmidt, E.E. Sulfur Metabolism Under Stress. Antioxidants Redox Signal. 2020, 33, 1158–1173. [Google Scholar] [CrossRef]
- Audibert, F. Screening for pre-eclampsia: The quest for the Holy Grail? Lancet 2005, 365, 1367–1369. [Google Scholar] [CrossRef]
- Chang, Y.S.; Chen, C.N.; Jeng, S.F.; Su, Y.N.; Chen, C.Y.; Chou, H.C.; Tsao, P.N.; Hsieh, W.S. The sFlt-1/PlGF ratio as a predictor for poor pregnancy and neonatal outcomes. Pediatr. Neonatol. 2017, 58, 529–533. [Google Scholar] [CrossRef]
- Verlohren, S.; Brennecke, S.P.; Galindo, A.; Karumanchi, S.A.; Mirkovic, L.B.; Schlembach, D.; Stepan, H.; Vatish, M.; Zeisler, H.; Rana, S. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2021, 27, 42–50. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Chen, Y.; Li, E.M.; Xu, L.Y. Guide to Metabolomics Analysis: A Bioinformatics Workflow. Metabolites 2022, 12, 357. [Google Scholar] [CrossRef]
Preeclampsia (N = 45) | Controls (N = 46) | p | |
---|---|---|---|
Age, years | |||
Mean (SD) | 32.1 (4.4) | 32.6 (4.8) | 0.556 |
95% CI | 30.7–33.4 | 31.2–34.1 | |
Parity | |||
Median (IQR, 25th–75th) | 1 (1, 1–2) | 2 (1, 1–2) | 0.003 * |
95% CI | 1.2–1.7 | 1.6–2.1 | |
Gestational age, weeks | |||
Median (IQR, 25th–75th) | 36 (9, 29–38) | 37 (4.5, 33.5–38) | 0.202 |
95% CI | 32.5–36.5 | 34.4–37.7 | |
BMI, kg/m2 | |||
Median (IQR, 25th–75th) | 26.35 (7.33, 23.88–31.21) | 24.51 (5.21, 21.84–27.04) | 0.016 * |
95% CI | 26.1–29.4 | 23.5–26.1 | |
Pregnancy weight gain, kg | |||
Median (IQR, 25th–75th) | 13 (10, 7–17) | 13 (6, 11–17) | 0.263 |
95% CI | 10.5–13.8 | 12.1–15.3 |
No | RI | RT (min) | Compound |
---|---|---|---|
1 | 882 | 4.90 | 3,3-dimethylcyclohexanol |
10 | 886 | 6.86 | 4-heptanone |
16 | 902 | 7.46 | 2-heptanone |
18 | 927 | 8.18 | 4-hydroxyphenylacetaldehyde-oxime |
20 | 969 | 9.51 | benzaldehyde |
24 | 981 | 9.94 | 2-methyl-5-(methylthio)-furan |
27 | 981 | 10.3 | phenol |
34 | 1030 | 11.52 | 1,2,3,4-tetramethyl-benzene (Prehnitol) |
39 | 1053 | 12.23 | tetrahydro-2,2-dimethyl-5-(1-methyl-1-propenyl)-furan |
42 | 1077 | 13.01 | 2,6-dimethyl-7-octen-2-ol |
45 | 1081 | 13.17 | benzenemethanol |
48 | 1084 | 13.26 | 1-phenylethanol |
49 | 1092 | 13.53 | butenylbenzene |
50 | 1099 | 13.8 | tetrahydrolinalool |
52 | 1120 | 14.39 | 2,5-dihydroxybenzaldehyde |
59 | 1176 | 16.04 | menthol |
60 | 1184 | 16.31 | 1,3,5-undecatriene |
64 | 1193 | 16.60 | 1,2,3,4,tetrahydro-1,5,7-trimethylnapthalene |
65 | 1205 | 16.97 | decanal |
66 | 1212 | 17.15 | 1,2,3,4-tetrahydro-1,1,6-trimethyl-naphtalene (alpha-ionene) |
67 | 1215 | 17.21 | 4,7-dimethyl-benzofuran |
81 | 1281 | 19.07 | vitispirane |
86 | 1300 | 19.62 | 2,6,10,10-tetramethyl-1-oxa-spiro[4.5]dec-6-ene |
87 | 1303 | 19.7 | undecanal |
88 | 1330 | 20.39 | 3-formyl-N-methyl-9-[phenylethynyl]dibenzo[2,3-a:5,6-a′] (1,4)-thiazine |
89 | 1356 | 21.07 | 1,2-dihydro-1,1,6-trimethylnaphthalene |
92 | 1387 | 21.89 | beta-damascenone |
95 | 1487 | 24.4 | 4-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-butanone |
107 | 1817 | 31.8 | hexadecanal |
Compound | p-Value | FC (PE/C) |
---|---|---|
2-methyl-5-(methylthio)-furan | 0.038 | 0.72 |
benzenemethanol | 0.042 | 0.68 |
1-phenylethanol | 0.014 | 0.61 |
1,2,3,4-tetrahydro-1,1,6-trimethyl-naphtalene | 0.043 | 0.23 |
vitispirane | 0.003 | 0.45 |
1,2-dihydro-1,1,6-trimethylnaphthalene | 0.029 | 0.66 |
hexadecanal | 0.042 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pehlić, M.; Dumančić, S.; Radan, M.; Galić, J.; Gruica, B.; Marijan, S.; Vulić, M. Untargeted Urinary Volatilomics Reveals Hexadecanal as a Potential Biomarker for Preeclampsia. Int. J. Mol. Sci. 2024, 25, 12371. https://doi.org/10.3390/ijms252212371
Pehlić M, Dumančić S, Radan M, Galić J, Gruica B, Marijan S, Vulić M. Untargeted Urinary Volatilomics Reveals Hexadecanal as a Potential Biomarker for Preeclampsia. International Journal of Molecular Sciences. 2024; 25(22):12371. https://doi.org/10.3390/ijms252212371
Chicago/Turabian StylePehlić, Marina, Stipe Dumančić, Mila Radan, Jelena Galić, Branimir Gruica, Sandra Marijan, and Marko Vulić. 2024. "Untargeted Urinary Volatilomics Reveals Hexadecanal as a Potential Biomarker for Preeclampsia" International Journal of Molecular Sciences 25, no. 22: 12371. https://doi.org/10.3390/ijms252212371