Deep-Learning-Based Carrier Frequency Offset Estimation and Its Cross-Evaluation in Multiple-Channel Models
Abstract
:1. Introduction
1.1. Deep Learning for Wireless Physical Layer
1.2. Related Works
- We propose a DL-based method for CFO estimation in 802.11n OFDM systems, which has higher estimation accuracy than the conventional method.The proposed model is expected to replace the CFO estimation module in wireless communication to achieve better performance.
- We evaluated the estimation ability of DL-based models trained in different channels to adapt to new channel states experimentally and discussed the reasons for the cross-evaluation phenomenon.The study helps to explore which model is suitable for reliable wireless communication.
- We find that the proposed deep learning method can outperform traditional methods in terms of estimation range without degrading performance.It proves that the DL-based model will have better adaptability to the environment with worse carrier frequency offset than traditional methods.
2. Background and System Model
2.1. 802.11 Frame Structure and Channel Model
- Short training field (STF). The short training field, which lasts 8 μs, consists of 10 same sequences (each containing 16 identical data samples) in the time domain. The correlation properties of STF are excellent, so STF is used for coarse timing synchronization, coarse frequency offset estimation and (coarse) channel estimation.
- Long trainning field (LTF). The long training field, which also lasts 8 μs, consists of 2 same sequences (each containing 64 identical data samples and 32 cyclic prefixes) in the time domain. Thanks to the longer duration of each sequence, LTF can be used for fine timing synchronization, fine frequency offset estimation and (fine) channel estimation.
2.2. Carrier Frequency Offset Influence
2.3. The Conventional Method of Estimating the CFO
3. System Model
3.1. Model Architecture
3.2. Data Set Generation
3.3. Training Experiments
4. Summary of Results
4.1. Comparison of Conventional and DL-Based Models
4.2. Cross-Evaluation in Different Channel Model
4.3. CFO Estimate Range of DL-Based Model and Conventional Method
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, W.; Li, G.Y. Nine Challenges in Artificial Intelligence and Wireless Communications for 6G. IEEE Wirel. Commun. 2022, 29, 140–145. [Google Scholar] [CrossRef]
- Li, D.; Xu, Y.; Zhao, M.; Zhu, J.; Zhang, S. Knowledge-Driven Machine Learning and Applications in Wireless Communications. IEEE Trans. Cogn. Commun. Netw. 2021, 8, 454–467. [Google Scholar] [CrossRef]
- Huang, H.; Guo, S.; Gui, G.; Yang, Z.; Zhang, J.; Sari, H.; Adachi, F. Deep Learning for Physical-Layer 5G Wireless Techniques: Opportunities, Challenges and Solutions. IEEE Wirel. Commun. 2020, 27, 214–222. [Google Scholar] [CrossRef]
- Gizzini, A.K.; Chafii, M. A Survey on Deep Learning Based Channel Estimation in Doubly Dispersive Environments. IEEE Access 2022, 10, 70595–70619. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.H. Deep Learning Based End-to-End Wireless Communication Systems without Pilots. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 702–714. [Google Scholar] [CrossRef]
- Wei, X.; Hu, C.; Dai, L. Deep Learning for Beamspace Channel Estimation in Millimeter-Wave Massive MIMO Systems. IEEE Trans. Commun. 2021, 69, 182–193. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.H. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wirel. Commun. Lett. 2018, 7, 114–117. [Google Scholar] [CrossRef]
- Wong, K.J.; Juwono, F.; Reine, R. Deep Learning for Channel Estimation and Signal Detection in OFDM-Based Communication Systems. ELKHA 2022, 14, 52. [Google Scholar] [CrossRef]
- Kang, J.M.; Chun, C.J.; Kim, I.M. Deep Learning Based Channel Estimation for MIMO Systems with Received SNR Feedback. IEEE Access 2020, 8, 121162–121181. [Google Scholar] [CrossRef]
- Ahmad, A.; Agarwal, S.; Darshi, S.; Chakravarty, S. DeepDeMod: BPSK Demodulation Using Deep Learning over Software-Defined Radio. IEEE Access 2022, 10, 115833–115848. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Jiang, Y.; Wu, Z. Intelligent and Reliable Deep Learning LSTM Neural Networks-Based OFDM-DCSK Demodulation Design. IEEE Trans. Veh. Technol. 2020, 69, 16163–16167. [Google Scholar] [CrossRef]
- Kim, M.; Zhang, Z.; Kim, D.; Choi, S. Deep-Learning-Based Frame Format Detection for IEEE 802.11 Wireless Local Area Networks. Electronics 2020, 9, 1170. [Google Scholar] [CrossRef]
- Dreifuerst, R.M.; Heath, R.W.; Kulkarni, M.N.; Charlie, J. Deep Learning-based Carrier Frequency Offset Estimation with One-Bit ADCs. In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Nachmani, E.; Marciano, E.; Lugosch, L.; Gross, W.J.; Burshtein, D.; Be’ery, Y. Deep Learning Methods for Improved Decoding of Linear Codes. IEEE J. Sel. Top. Signal Process. 2018, 12, 119–131. [Google Scholar] [CrossRef]
- Zhang, Y.; Doshi, A.; Liston, R.; Tan, W.T.; Zhu, X.; Andrews, J.G.; Heath, R.W. DeepWiPHY: Deep Learning-Based Receiver Design and Dataset for IEEE 802.11ax Systems. IEEE Trans. Wirel. Commun. 2021, 20, 1596–1611. [Google Scholar] [CrossRef]
- Dorner, S.; Cammerer, S.; Hoydis, J.; ten Brink, S. Deep Learning Based Communication Over the Air. IEEE J. Sel. Top. Signal Process. 2018, 12, 132–143. [Google Scholar] [CrossRef]
- Malakar, S.; Ghosh, M.; Bhowmik, S.; Sarkar, R.; Nasipuri, M. A GA based hierarchical feature selection approach for handwritten word recognition. Neural Comput. Appl. 2019, 32, 2533–2552. [Google Scholar] [CrossRef]
- Bacanin, N.; Stoean, R.; Zivkovic, M.; Petrovic, A.; Rashid, T.A.; Bezdan, T. Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization. Mathematics 2021, 9, 2705. [Google Scholar] [CrossRef]
- Jin, M.H.; Cho, Y.M.; Yang, J.; Kim, D.K. Pilot-aided carrier frequency offset estimation for OFDM systems. In Proceedings of the 2008 2nd International Conference on Signal Processing and Communication Systems, Gold Coast, QLD, Australia, 15–17 December 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Lu, J.; Lu, C. Frequency offset drift monitoring: Enabling simultaneously optimum performance and minimum cost of frequency offset estimation. Opt. Lett. 2019, 44, 3753. [Google Scholar] [CrossRef] [PubMed]
- Güven, E.; Kurt, G.K. CNN-aided Channel and Carrier Frequency Offset Estimation for HAPS-LEO Links. In Proceedings of the 2022 IEEE Symposium on Computers and Communications (ISCC), Rhodes, Greece, 30 June–3 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kumari, S.; Srinivas, K.K.; Kumar, P. Channel and Carrier Frequency Offset Equalization for OFDM Based UAV Communications Using Deep Learning. IEEE Commun. Lett. 2021, 25, 850–853. [Google Scholar] [CrossRef]
- Ninkovic, V.; Valka, A.; Dumic, D.; Vukobratovic, D. Deep Learning-Based Packet Detection and Carrier Frequency Offset Estimation in IEEE 802.11ah. IEEE Access 2021, 9, 99853–99865. [Google Scholar] [CrossRef]
- 802.11-2012-IEEE Standard; IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE: New York, NY, USA, 2012.
- Kim, K.S.; Kim, S.W.; Cho, Y.S.; Ahn, J.Y. Synchronization and Cell-Search Technique Using Preamble for OFDM Cellular Systems. IEEE Trans. Veh. Technol. 2007, 56, 3469–3485. [Google Scholar]
- Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Merrienboer, B.V.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.H.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Blount, W.; Li, K.; Lotlikar, A.; Doshi, A.; Andrews, J.G. Evaluation of Adaptation Methods for Deep Learning-based Wi-Fi Receivers. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 656–661. [Google Scholar] [CrossRef]
Model | Delay Spread (ns) | Number of Clusters | Numbe of Taps | Environment |
---|---|---|---|---|
Model A | 0 | 1 | 1 | N/A |
Model B | 15 | 2 | 9 | Residential |
Model C | 30 | 2 | 14 | Residential small office |
Model D | 50 | 3 | 18 | Typical office |
Model E | 100 | 4 | 18 | Large office |
Model F | 150 | 6 | 18 | Large space (indoors/outdoors) |
Layer | Output Dimensions | Activation Function |
---|---|---|
Input | 320 × 2 | None |
Rearrange | None | |
GRU | None | |
Dense | 256 | None |
Dense | 16 | None |
Dense | 1 | Tanh |
Dateset | Channel Model | CFO Range (Hz) |
---|---|---|
A | AWGN channel | (−625,000, 625,000) |
B | 802.11n channel model B | (−625,000, 625,000) |
C | 802.11n channel model C | (−625,000, 625,000) |
D | 802.11n channel model D | (−625,000, 625,000) |
E | 802.11n channel model E | (−625,000, 625,000) |
F | 802.11n channel model F | (−625,000, 625,000) |
G | 802.11n channel model A–F | (−625,000, 625,000) |
H | 802.11n channel model F | (−1,000,000, 1,000,000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wei, S.; Zou, L.; Liao, F.; Lang, W.; Li, Y. Deep-Learning-Based Carrier Frequency Offset Estimation and Its Cross-Evaluation in Multiple-Channel Models. Information 2023, 14, 98. https://doi.org/10.3390/info14020098
Wang Z, Wei S, Zou L, Liao F, Lang W, Li Y. Deep-Learning-Based Carrier Frequency Offset Estimation and Its Cross-Evaluation in Multiple-Channel Models. Information. 2023; 14(2):98. https://doi.org/10.3390/info14020098
Chicago/Turabian StyleWang, Zhenyi, Shengyun Wei, Li Zou, Feifan Liao, Weimin Lang, and Yuanzhuo Li. 2023. "Deep-Learning-Based Carrier Frequency Offset Estimation and Its Cross-Evaluation in Multiple-Channel Models" Information 14, no. 2: 98. https://doi.org/10.3390/info14020098
APA StyleWang, Z., Wei, S., Zou, L., Liao, F., Lang, W., & Li, Y. (2023). Deep-Learning-Based Carrier Frequency Offset Estimation and Its Cross-Evaluation in Multiple-Channel Models. Information, 14(2), 98. https://doi.org/10.3390/info14020098